

University of Birmingham

The dynamic geometry of interaction machine
Muroya, Koko; Ghica, Dan

DOI:
10.4230/LIPIcs.CSL.2017.32

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Muroya, K & Ghica, D 2017, The dynamic geometry of interaction machine: a call-by-need graph rewriter. in V
Goranko & M Dam (eds), 26th EACSL Annual Conference on Computer Science Logic (CSL 2017)., 32, Leibniz
International Proceedings in Informatics (LIPIcs), vol. 82, Schloss Dagstuhl, pp. 32:1-32:15, 26th EACSL Annual
Conference on Computer Science Logic (CSL 2017), Stockholm, Sweden, 20/08/17.
https://doi.org/10.4230/LIPIcs.CSL.2017.32

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 26. Apr. 2024

https://doi.org/10.4230/LIPIcs.CSL.2017.32
https://doi.org/10.4230/LIPIcs.CSL.2017.32
https://birmingham.elsevierpure.com/en/publications/7ac8e391-4477-4473-8650-933da62fbd26

The Dynamic Geometry of Interaction Machine:
A Call-by-Need Graph Rewriter
Koko Muroya1 and Dan R. Ghica2

1 University of Birmingham, Birmingham, UK
k.muroya@cs.bham.ac.uk

2 University of Birmingham, Birmingham, UK
d.r.ghica@cs.bham.ac.uk

Abstract
Girard’s Geometry of Interaction (GoI), a semantics designed for linear logic proofs, has been also
successfully applied to programming languages. One way is to use abstract machines that pass a
token in a fixed graph, along a path indicated by the GoI. These token-passing abstract machines
are space efficient, because they handle duplicated computation by repeating the same moves of
a token on the fixed graph. Although they can be adapted to obtain sound models with regard
to the equational theories of various evaluation strategies for the lambda calculus, it can be at
the expense of significant time costs. In this paper we show a token-passing abstract machine
that can implement evaluation strategies for the lambda calculus, with certified time efficiency.
Our abstract machine, called the Dynamic GoI Machine (DGoIM), rewrites the graph to avoid
replicating computation, using the token to find the redexes. The flexibility of interleaving token
transitions and graph rewriting allows the DGoIM to balance the trade-off of space and time costs.
This paper shows that the DGoIM can implement call-by-need evaluation for the lambda calculus
by using a strategy of interleaving token passing with as much graph rewriting as possible. Our
quantitative analysis confirms that the DGoIM with this strategy of interleaving the two kinds
of possible operations on graphs can be classified as “efficient” following Accattoli’s taxonomy of
abstract machines.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages

Keywords and phrases Geometry of Interaction, cost analysis, call-by-need reduction

Digital Object Identifier 10.4230/LIPIcs.CSL.2017.32

1 Introduction

1.1 Token-passing Abstract Machines for λ-calculus
Girard’s Geometry of Interaction (GoI) [16] is a semantic framework for linear logic proofs [15].
One way of applying it to programming language semantics is via “token-passing” abstract
machines. A term in the λ-calculus is evaluated by representing it as a graph, then passing
a token along a path indicated by the GoI. Token-passing GoI decomposes higher-order
computation into local token actions, or low-level interactions of simple components. It can
give strikingly innovative implementation techniques for functional programs, such as Mackie’s
Geometry of Implementation compiler [18], Ghica’s Geometry of Synthesis (GoS) high-level
synthesis tool [12], and Schöpp’s resource-aware program transformation to a low-level
language [24]. The interaction-based approach is also convenient for the complexity analysis
of programs, e.g. Dal Lago and Schöpp’s IntML type system of logarithmic-space evaluation
[7], and Dal Lago et al.’s linear dependent type system of polynomial-time evaluation [5, 6].

© Koko Muroya and Dan R. Ghica;
licensed under Creative Commons License CC-BY

26th EACSL Annual Conference on Computer Science Logic (CSL 2017).
Editors: Valentin Goranko and Mads Dam; Article No. 32; pp. 32:1–32:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2017.32
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

32:2 The Dynamic Geometry of Interaction Machine: A Call-by-Need Graph Rewriter

Fixed-space execution is essential for GoS, since in the case of digital circuits the memory
footprint of the program must be known at compile-time, and fixed. Using a restricted
version of the call-by-name language Idealised Algol [13] not only the graph, but also the
token itself can be given a fixed size. Surprisingly, this technique also allows the compilation
of recursive programs [14]. The GoS compiler shows both the usefulness of the GoI as a
guideline for unconventional compilation and the natural affinity between its space-efficient
abstract machine and call-by-name evaluation. The practical considerations match the prior
theoretical understanding of this connection [9].

In contrast, re-evaluating a term by repeating its token actions poses a challenge for call-
by-value evaluation because duplicated computation must not lead to repeated evaluation [11,
23, 17, 3]. Moreover, in call-by-value repeating token actions raises the additional technical
challenge of avoiding repeating any associated computational effects [22, 21, 4]. A partial
solution to this conundrum is to focus on the soundness of the equational theory, while
deliberately ignoring the time costs [21]. However, Fernández and Mackie suggest that in a
call-by-value scenario, the time efficiency of a token-passing abstract machine could also be
improved, by allowing a token to jump along a path, even though a time cost analysis is not
given [11].

For us, solving the the problem of creating a GoI-style abstract machine which computes
efficiently with evaluation strategies other than call-by-name is a first step in a longer-range
research programme. The compilation techniques derived from the GoI can be extremely
useful in the case of unconventional computational platforms. But if GoI-style techniques are
to be used in a practical setting they need to extend beyond call-by-name, not just correctly
but also efficiently.

1.2 Interleaving Token Passing with Graph Rewriting
A token jumping, rather than following a path, can be seen as a simple form of short-circuiting
that path, which is a simple form of graph-rewriting. This idea first occurs in Mackie’s
work as a compiler optimisation technique [18] and is analysed in more depth theoretically
by Danos and Regnier in the so-called Interaction Abstract Machine [9]. More general
graph-rewriting-based semantics have been used in a system called virtual reduction [8],
where rewriting occurs along paths indicated by GoI, but without any token-actions. The
most operational presentation of the combination of token-passing and jumping was given
by Fernández and Mackie [11]. The interleaving of token actions and rewriting is also
found in Sinot’s interaction nets [25, 26]. We can reasonably think of the DGoIM as their
abstract-machine realisation.

We build on these prior insights by adding more general, yet still efficient, graph-rewriting
facilities to the setting of a GoI token-passing abstract machine. We call an abstract machine
that interleaves token passing with graph rewriting the Dynamic GoI Machine (DGoIM),
and we define it as a state transition system with transitions for token passing as well as
transitions for graph rewriting. What connects these two kinds of transitions is the token
trajectory through the graph, its path. By examining it, the DGoIM can detect redexes and
trigger rewriting actions.

Through graph rewriting, the DGoIM reduces sub-graphs visited by the token, avoiding
repeated token actions and improving time efficiency. On the other hand, graph rewriting
can expand a graph by e.g. copying sub-graphs, so space costs can grow. To control this
trade-off of space and time cost, the DGoIM has the flexibility of interleaving token passing
with graph rewriting. Once the DGoIM detects that it has traversed a redex, it may rewrite
it, but it may also just propagate the token without rewriting the redex.

K. Muroya and D. R. Ghica 32:3

As a first step in our exploration of the flexibility of this machine, we consider the two
extremal cases of interleaving. The first extremal case is “passes-only,” in which the DGoIM
never triggers graph rewriting, yielding an ordinary token-passing abstract machine. As a
typical example, the λ-term (λx.t)u is evaluated like this:

λx.t u

1. A token enters the graph on the left at the bottom open
edge.

2. A token visits and goes through the left sub-graph λx.t.
3. Whenever a token detects an occurrence of the variable

x in t, it traverses the right sub-graph u, then returns
carrying the resulting value.

4. A token finally exits the graph at the bottom open edge.
Step 3 is repeated whenever term u needs to be re-evaluated. This strategy of interleaving
corresponds to call-by-name reduction.

The other extreme is “rewrites-first,” in which the DGoIM interleaves token passing with
as much, and as early, graph rewriting as possible, guided by the token. This corresponds
to both call-by-value and call-by-need reductions, the difference between the two being the
trajectory of the token. In the case of call-by-value, the token will enter the graph from the
bottom, traverse the left-hand-side sub-graph, which happens to be already a value, then
visit sub-graph u even before x is used in a call. While traversing u, it will cause rewrites
such that when the token exits, it leaves behind the graph of a machine corresponding to a
value v such that u reduces to v. The difference with call-by-need is that the token will visit
u only when x is encountered in λx.t. In both cases, if repeated evaluation is required then
the sub-graph corresponding now to v is copied, so that one copy can be further rewritten, if
needed, while the original is kept for later reference.

1.3 Contributions

This work presents a DGoIM model for call-by-need, which can be seen as a case study of
the flexibility achieved through controlled interleaving of rewriting and token-passing. This
is achieved through a rewriting strategy which turns out to be as natural as the passes-only
strategy is for implementing call-by-name. The DGoIM avoids re-evaluation of a sub-term
by rewriting any sub-graph visited by a token so that the updated sub-graph represents the
evaluation result, but, unlike call-by-value, it starts by evaluating the sub-graph corresponding
to the function λx.t first. We chose call-by-need mainly because of the technical challenges it
poses. Adapting the technique to call-by-value is a straightforward exercise, and we discuss
other alternative in the Conclusion.

We analyse the time cost of the DGoIM with the rewrites-first interleaving, using Accattoli
et al.’s general methodology for quantitative analysis [2, 1]. Their method cannot be used “off
the shelf,” because the DGoIM does not satisfy one of the assumptions used in [1, Section 3].
Our machine uses a more refined transition system, in which several steps correspond to a
single one in loc. cit.. We overcome this technical difficulty by building a weak simulation of
Danvy and Zerny’s storeless abstract machine [10] to which the recipe does apply. The result
of the quantitative analysis confirms that the DGoIM with the rewrites-first interleaving can
be classified as “efficient,” following Accattoli’s taxonomy of abstract machines introduced
in [1].

As we intend to use the DGoIM as a starting point for semantics-directed compilation,
this result is an important confirmation that no hidden inefficiencies lurk within the fabric of
the rather complex machinery of the DGoIM.

CSL 2017

32:4 The Dynamic Geometry of Interaction Machine: A Call-by-Need Graph Rewriter

Ax Cut ` ! ? D Cn

|

Figure 1 Generators of Graphs.

H

? !

|
|

Figure 2 !-box H.

Note. A longer version of this article including all proofs is available as a technical re-
port [20].

2 The Dynamic GoI Machine

The graphs used to construct the DGoIM are essentially MELL proof structures of the
multiplicative and exponential fragment of linear logic [15]. They are directed, and built over
the fixed set of nodes called “generators” shown in Figure 1.

A Cn-node is annotated by a natural number n that indicates its in-degree, i.e. the
number of incoming edges. It generalises a contraction node, whose in-degree is 2, and a
weakening node, whose in-degree is 0, of MELL proof structures. In Figure 1, a bunch of n
edges is depicted by a single arrow with a strike-out. Graphs must satisfy the well-formedness
condition below. Note that, unlike the usual approach [15], we need not assign MELL
formulas to edges, nor require a graph to be a valid proof net.

I Definition 1 (well-boxed). A directed graph G built over the generators in Figure 1 is
well-boxed if:

it has no incoming edges
each !-node v in G comes with a sub-graph H of G and an arbitrary number of ?-nodes ~u
such that:

the sub-graph H (called “!-box”) is well-boxed inductively and has at least one outgoing
edges
the !-node v (called “principal door of H”) is the target of one outgoing edge of H
the ?-nodes ~u (called “auxiliary doors of H”) are the targets of all the other outgoing
edges of H

each ?-node is an auxiliary door of exactly one !-box
any two distinct !-boxes with distinct principal doors are either disjoint or nested

Note that a !-box might have no auxiliary doors. We use a dashed box to indicate a !-box
together with its principal door and its auxiliary doors, as in Figure 2. The auxiliary doors
are depicted by a single ?-node with a thick frame and with single incoming and outgoing
arrows with strike-outs. Directions of edges are omitted in the rest of the paper, if not
ambiguous, to reduce visual clutter.

The DGoIM is formalised as a labelled transition system with two kinds of transitions,
namely pass transitions 99K and rewrite transitions . Labels of transitions are b, s, o that
stand for “beta,” “substitution,” and “overheads” respectively.

I Definition 2. Let L be a fixed countable (infinite) set of names. The state of the transition
system s = (G, p, h,m) consists of the following elements:

K. Muroya and D. R. Ghica 32:5

(h, m) (Axα : h, m) (h, m) (Cutα : h, m)
Axα↑ 99Ko Axα ↓ Cutα

↓ 99Ko Cutα
↑

(h, m) ($α : h, l : m) (h, m) ($α : h, r : m)

$ α
↓ 99Ko $ α

↓ $ α
↓ 99Ko $ α

↓

(h, l : m) ($α : h, m) (h, r : m) ($α : h, m)

$ α
↑
99Ko $ α

↑ $ α
↑
99Ko $ α

↑

(h, m) (!α : h, m) (h, m) (Dα : h, m)

! α
↓ 99Ko ! α

↓ Dα

↓ 99Ko Dα
↓

(h, m) (Cnα : h, m)

Cn α

↓

|

99Ko Cn α

|

↓

Figure 3 Pass Transitions ($ ∈ {⊗,`}, n > 0).

a named well-boxed graph G = (G, `G), that is a well-boxed graph G with a naming lG
that assigns a unique name α ∈ L to each node of G
a pair p = (e, d) called position, of an edge e of G and a direction d ∈ {↑, ↓}
a history stack h defined by the grammar below, α ∈ L, n ∈ N:

h ::= � | Axα : h | Cutα : h | ⊗α : h | `α : h | !α : h | Dα : h | Cnα : h.

a multiplicative stack m defined by the BNF grammar m ::= � | l : m | r : m.

A pass transition (G, p, h,m) 99Ko (G, p′, h′,m′) changes a position using a multiplicative
stack, pushes to a history stack, and keeps a named graph unchanged. All pass transitions
have the label o.

Figure 3 shows pass transitions graphically, omitting irrelevant parts of graphs. A position
p = (e, d) is represented by a bullet • (called “token”) on the edge e together with the direction
d. Recall that an edge with a strike-out represents a bunch of edges. The transition in the
last line of Figure 3 (where we assume n > 0) moves a token from one of the incoming edges
of a Cn-node to the outgoing edge of the node. Node names α ∈ L are indicated wherever
needed.

A rewrite transition (G, (e, d), h,m) x (G′, (e′, d), h′,m) consumes some elements of a
history stack, rewrites a sub-graph of a named graph, and updates a position (or, more
precisely, its edge). The label x of a rewrite transition x is either b, s or o. Figure 4 shows
rewrite transition in the same manner as Figure 3. Multiplicative stacks are not present in
the figure since they are irrelevant. The]-node represents some arbitrary node (incoming
edges omitted). We can see that no rewrite transition breaks the well-boxed-ness of a graph.

CSL 2017

32:6 The Dynamic Geometry of Interaction Machine: A Call-by-Need Graph Rewriter

Cutα : Axβ : h h

Cutα
Ax

β↑ o ↑ (1)

`α : Cutβ : ⊗γ : h Cutβ : h

`α

Cut
β

γ

↑ b Cut
β

Cutν

↑ (2)

`α : Cutβ : ⊗γ : h Cutβ : h

`α

Cut
β

γ

↑ b Cut
β

Cutν

↑ (3)

!α : Cutβ : Dγ : h Cutβ : h

H

?
~δ

! α
Cut

β

Dγ

|
|

↑ o
H

Cut
β

| ↑ (4)

!α : Cutβ : Axγ : h !α : h

! α
Cut

β

Axγ
↑

 o ! α
↑ (5)

!α : Cutβ : Cn+1
γ :]δ : h !ν : Cutη :]δ : h

H

?
~ε

! α
Cg+f−1

~φ

Cut
β

Cn+1γ

]
δ| ↑

|

| |
|

 s

H≈

?
~µ

! ν

H

?
~ε

! α
Cg+2f−1

~φ

Cut
β

Cutη

Cn γ

]
δ

| ↑

| |

|

|

|

|

(6)

!α : Cutβ : C1
γ :]δ : h !α : Cutβ :]δ : h

H

?
~δ

! α
Cut

β

C1γ

]
δ|

|

↑ s
H

?
~δ

! α
Cut

β

]
δ|

|

↑ (7)

Figure 4 Rewrite Transitions (n > 0).

The rewrite transitions (1), (2), (3), and (4) are exactly taken from MELL cut elimination
[15]. The rewrite transition (5) is a variant of (1). It acts on a connected pair of a Cut-node
and an Ax-node that arises as a result of the transition (6) or (7) but cannot be rewritten by
the transition (1). These transitions (6) and (7) are inspired by the MELL cut elimination
process for (binary) contraction nodes; note that we assume n > 0 in Figure 4.

The rewrite transition (6) in Figure 4 deserves further explanation. The sub-graph
H≈ is a copy of the !-box H where all the names are replaced with fresh ones. The thick
Cg+f−1-node and Cg+2f−1-node represent families {Cg(j)+f−1(j)}mj=0, {Cg(j)+2f−1(j)}mj=0, of
C-nodes respectively. They are connected to ?-nodes ~ε = ε0, . . . , εl and ~µ = µ0, . . . , µl in such
a way that:

the natural numbers l,m satisfy l ≥ m, and come with a surjection f : {0, . . . , l} �
{0, . . . ,m} and a function g : {0, . . . ,m} → N to the set N of natural numbers
each ?-node εi and each ?-node µi are both connected to the C-node φf(i)
each C-node φj has g(j) incoming edges whose source is none of the ?-nodes ~ε, ~µ.

Some rewrite transitions introduce new nodes to a graph. We require that the uniqueness of
names throughout a whole graph is not violated by these transitions. Under this requirement,
the introduced names ν, ~µ and the renaming H≈ in Figure 4 can be arbitrary.

I Definition 3. We call a state ((G, `G), p, h,m) rooted at e0 for an open (outgoing) edge
e0 of G, if there exists a finite sequence ((G, `G), (e0, ↑),�,�) 99K∗ ((G, `G), p, h,m) of pass
transitions such that the position p appears only last in the sequence.

Lemma 4(1) below implies that, the DGoIM can determine whether a rewrite transition
is possible at a rooted state by only examining a history stack. The rooted property is
preserved by transitions.

K. Muroya and D. R. Ghica 32:7

I Lemma 4 (rooted states). Let ((G, `G), (e, d), h,m) be a rooted state at e0 with a (finite)
sequence ((G, `G), (e0, ↑),�,�) 99K∗ ((G, `G), (e, d), h,m).
1. The history stack represents an (undirected and possibly cyclic) path of graph G connecting

edges e0 and e.
2. If a transition ((G, `G), (e, d), h,m) (99K ∪) ((G′, `G′), p′, h′,m′) is possible, the open

edges of G′ are bijective to those of G, and the state ((G′, `G′), p′, h′,m′) is rooted at the
open edge corresponding to e0.

2.1 Cost Analysis of the DGoIM
The time cost of updating stacks is constant, as each transition changes only a fixed number
of top elements of stacks. Updating a position is local and needs constant time, as it does
not require searching beyond the next edge in the graph from the current edge. We can
conclude all pass transitions take constant time.

We estimate the time cost of rewrite transitions by counting updated nodes. The rewrite
transitions (1)–(3) involve a fixed number of nodes, and transition (7) eliminates one C1-node.
Only transitions (4) and (6) have non-constant time cost. The number of doors deleted in
transition (4) can be arbitrary, and so is the number of nodes introduced in transition (6).

Pass transitions and rewrite transitions are separately deterministic (up to the choice of
new names). However, both a pass transition and a rewrite transition are possible at some
states. We here opt for the following “rewrites-first” way to interleave pass transitions with
as much rewrite transitions as possible:

s _x s
′ Definition⇐⇒

{
s x s

′ (if x possible)
s 99Kx s

′ (if only 99Kx possible).

The DGoIM with this strategy yields a deterministic labelled transition system _ up to the
choice of new names in rewrite transitions. We denote it by DGoIM_, making the strategy
explicit. Note that there can be other strategies of interleaving although we do not explore
them here.

Space. Before we conclude, several considerations about space cost analysis. Space costs
are generally bound by time costs, so from our analysis there is an implicit guarantee that
space usage will not explode. But if a more refined space cost analysis is desired, the following
might prove to be useful.

The space required in implementing a named well-boxed graph is bounded by the number
of its nodes. The number of edges is linear in the number of nodes, because each generator
has a fixed out-degree and every edge of a well-boxed graph has its source.

Additionally a !-box can be represented by associating its auxiliary doors to its principal
door. This adds connections between doors to a graph that are as many as ?-nodes. It
enables the DGoIM to identify nodes of a !-box by following edges from its principal and
auxiliary doors. Nodes in a !-box that are not connected to doors can be ignored, since these
nodes are never visited by a token (i.e. pointed by a position) as long as the DGoIM acts on
rooted states.

Only the rewrite transition (6) can increase the number of nodes of a graph by copying a
!-box with its doors. Rewrite transitions can copy !-boxes and eliminate the !-box structure,
but they never create new !-boxes or change existing ones. This means that, in a sequence of
transitions that starts with a graph G, any !-boxes copied by the rewrite transition (6) are
sub-graphs of the graph G. Therefore the number of nodes of a graph increases linearly in
the number of transitions.

CSL 2017

32:8 The Dynamic Geometry of Interaction Machine: A Call-by-Need Graph Rewriter

Terms t ::= x | λx.t | t t | t[x← t] Pure terms t ::= x | λx.t | t t
Values v ::= λx.t Pure values v ::= λx.t

Evaluation contexts E ::= 〈·〉 | E t | E[x← t] | E〈x〉[x← E]
Substitution contexts A ::= 〈·〉 | A[x← t]

(t u, E)term →o (t, E〈〈·〉u〉)term (8)
(x, E1〈E2[x← t]〉)term →o (t, E1〈E2〈x〉[x← 〈·〉]〉)term (9)

(v, E)term →o (v, E)ctxt (10)
(λx.t, E〈Au〉)ctxt →b (t, E〈A〈〈·〉[x← u]〉〉)term (11)

(v, E1〈E2〈x〉[x← A]〉)ctxt →s (v≈, E1〈A〈E2[x← v]〉〉)ctxt (if x ∈ FV∅(E2)) (12)
(v, E1〈E2〈x〉[x← A]〉)ctxt →s (v, E1〈A〈E2〉〉)ctxt (if x /∈ FV∅(E2)) (13)

Figure 5 Call-by-need Storeless Abstract Machine (SAM).

Elements of history stacks and multiplicative stacks, as well as a position, are essentially
pointers to nodes. Because each pass/rewrite transition adds at most one element to each
stack, the lengths of stacks also grow linearly in the number of transitions.

3 Weak Simulation of the Call-by-Need Storeless Abstract Machine

We show the DGoIM_ implements call-by-need evaluation by building a weak simulation
of the call-by-need Storeless Abstract Machine (SAM) defined in Figure 5. It simplifies
Danvy and Zerny’s storeless machine [10, Figure 8] and accommodates a partial mechanism
of garbage collection (namely, transition (13)). We will return to a discussion of garbage
collection at the end of this section.

The SAM is a labelled transition system between configurations (t, E). They are classified
into two groups, namely term configurations and context configurations, that are indicated
by annotations term, ctxt respectively. Pure terms (resp. pure values) are terms (resp. values)
that contain no explicit substitutions t[x← u]; we sometimes omit the word “pure” and the
overline in denotation, if unambiguous.

Each evaluation context E contains exactly one open hole 〈·〉, and replacing it with a
term t (or an evaluation context E′) yields a term E〈t〉 (or an evaluation context E〈E′〉)
called plugging. In particular an evaluation context E′〈x〉[x← E] replaces the open hole of
E′ with x and keeps the open hole of E.

Labels of transitions are the same as those used for the DGoIM (i.e. b, s and o). The
transition (11), with the label b, corresponds to the β-reduction where evaluation and
substitution of function arguments are delayed. Substitution happens in the transitions
(12) and (13), with the label s, that replaces exactly one occurrence of a variable. The
other transitions with the label o, namely (t, E)→o (t′, E′), search a redex by rearranging a
configuration. The two pluggings E〈t〉 and E′〈t′〉 indeed yield exactly the same term.

We characterise “free” variables using multisets of variables. Multisets make explicit how
many times a variable is duplicated in a term (or an evaluation context). This duplication of
information is later used in translating terms to graphs.

I Notation (multiset). A multiset x := [x, . . . , x] consists of a finite number of xs. The
multiplicity of x in a multiset M is denoted by M(x). We write x ∈k M if M(x) = k, x ∈M
if M(x) > 0 and x /∈ M if M(x) = 0. A multiset M comes with its support set supp(M).

K. Muroya and D. R. Ghica 32:9

For two multisets M and M ′, their sum and difference are denoted by M +M ′ and M −M ′
respectively. Removing all x from a multiset M yields the multiset M\x, e.g. [x, x, y]\x = [y].

Each term t and each evaluation context E are respectively assigned multisets of variables
FV(t),FVM (E), with M a multiset of variables. The multisets FV are defined inductively
as follows.

FV(x) := [x],
FV(λx.t) := FV(t)\x,

FV(t u) := FV(t) + FV(u),
FV(t[x← u]) := (FV(t)\x) + FV(u).

FVM (〈·〉) := M,

FVM (E t) := FVM (E) + FV(t),
FVM (E[x← t]) := (FVM (E))\x+ FV(t),

FVM (E′〈x〉[x← E]) := (FV[x](E′))\x+ FVM (E).

The following equations can be proved by a straightforward induction on E.

I Lemma 5 (decomposition).

FV(E〈t〉) = FVFV(t)(E)
FVM (E〈E′〉) = FVFVM (E′)(E)

A variable x is bound in a term t if it appears in the form of λx.u or u[x→ u′]. A variable
x is captured in an evaluation context E if it appears in the form of E′[x← t] (but not in
the form of E′〈x〉[x← E′′]). Transitions (12) and (13) depend on whether or not the bound
variable x appears in the evaluation context E2. If the variable x appears, the value v is kept
for later use and its copy v≈ is substituted for x. If not, the value v itself is substituted for x.

The SAM does not assume α-equivalence, but explicitly deals with it in copying a value.
The copy v≈ has all its bound variables replaced by distinct fresh variables (i.e. distinct
variables that do not appear in a whole configuration). This implies that the SAM is
deterministic up to the choice of new variables introduced in copying.

A term t is closed if FV(t) = ∅; and is well-named if each variable gets bound at most
once in t, and each bound variable x in t satisfies x /∈ FV(t). An initial configuration is
a term configuration (t0, 〈·〉)term where t0 is closed and well-named. A finite sequence of
transitions from an initial configuration is called an execution. A reachable configuration
(t, E), that is a configuration coming with an execution from some initial configuration to
itself, satisfies the following invariant properties.

I Lemma 6 (reachable configurations). Let (t, E) be a reachable configuration from an initial
configuration (t0, 〈·〉)term. The term t is a sub-term of the initial term t0 up to α-equivalence,
and the plugging E〈t〉 is closed and well-named.

The proof is by induction on the length of the execution.
We now conclude with a brief consideration on garbage collection. Transition (13) elimin-

ates an explicit substitution and therefore implements a partial mechanism of garbage collec-
tion. The mechanism is partial because only an explicit substitution that is looked up in an
execution can be eliminated, as illustrated below. The explicit substitution [x← λz.z] is elim-
inated in ((λx.x) (λz.z), 〈·〉)term →∗ (λz.z, 〈·〉)ctxt , but not in ((λx.λy.y) (λz.z), 〈·〉)term →∗

CSL 2017

32:10 The Dynamic Geometry of Interaction Machine: A Call-by-Need Graph Rewriter

x† := Axx

(λx.t)† :=

t†

? !

Ck|FV(t)\x

|FV(t)\x

|x

x

(if x ∈k FV(t))

(t u)† :=
t† u†

Cut
D

Ax

|FV(t) |FV(u)

(t[x← u])† :=
t† u†

Ck

Cut
|FV(t)\x

|x

x

|

FV(u)

(if x ∈k FV(t))

Figure 6 Inductive Translation (·)† of Terms to Well-boxed Graphs.

〈·〉†M := ∅

(E u)†M :=
E†M u†

Cut
D

Ax

|M

|FVM (E) |FV(u)

(E[x← u])†M :=
E†M u†

Ck

Cut

|M

|FVM (E)\x

|x

x

|

FV(u)

(if x ∈k FVM (E))

(E′〈x〉[x← E])†M :=
(E′)†∅ E†M

Ax

Ck+1
Cut

x |M

|FV∅(E′)\x

| x

x

|

FVM (E)

(if x ∈k FV∅(E′))

Figure 7 Inductive Translation (·)†M of Evaluation Contexts to Graphs.

(λy.y, 〈·〉[x← λz.z])ctxt , because the bound variable x does not occur. We incorporate this
partial garbage collection to clarify the use of the rewrite transitions (6) and (7).

We can now define a weak simulation using translations of terms and evaluation contexts.
The translations (·)† are inductively defined in Figure 6 and Figure 7. What underlies them is
the so-called “call-by-value” translation of intuitionistic logic to linear logic. This translates
all and only values to !-boxes that can be copied by rewrite transitions.

The translation t†

|FV(t)
of a term t is a well-boxed graph, where some edges are

annotated with variables to help understanding. We continue representing a bunch of edges
by a single edge and a strike-out, with annotations denoted by a multiset, and a bunch of

nodes by a single thick node. The translation E†M

|M

|FVM (E)
of an evaluation context E, given

a multiset M of variables, is not a well-boxed graph because it has incoming edges. Lemma 7
is analogous to Lemma 5; their proof is by straightforward induction on E.

K. Muroya and D. R. Ghica 32:11

I Lemma 7 (decomposition).

(E〈t〉)† =
t
†

E†
FV(t)

|FV(t)

|FVFV(t)(E)

(E〈E′〉)†M =
(E′)†M

E†FVM (E′)

|M

|FVM (E)

|FVFVM (E′)(E)

The translations (·)† are lifted to a binary relation between reachable configurations of
the SAM and rooted states of the DGoIM_.

I Definition 8 (binary relation �). A reachable configuration c and a state ((G, `G), p, h,m)
satisfies c � ((G, `G), p, h,m) if and only if `G is an arbitrary naming, ((G, `G), p, h,m) is
rooted at the unique open edge of G, and

(G, p) =

t
†

E†
FV(t)

|FV(t) ↑ (if c = (t, E)term)

v�

E†FV(v)

? !

|FV(v) ↑

|FV(v)

(if v† =
v�

? !

|FV(v)

|FV(v)

and c = (v,E)ctxt)

Note that the graph G in the above definition has exactly one open edge, because it is
equal to the translation E〈t〉† (Lemma 7) and the plugging E〈t〉 is closed (Lemma 6).

The binary relation � gives a weak simulation, as stated below. It is weak in Milner’s
sense [19], where transitions with the label o are regarded as internal. We can conclude from
Theorem 9 below that the DGoIM_ soundly implements the call-by-need evaluation.

I Theorem 9 (weak simulation). Let a configuration c and a state s satisfy c � s.
1. If a transition c→b c

′ of the SAM is possible, there exists a sequence s _2
o_b_o s

′ such
that c′ � s′.

2. If a transition c→s c
′ of the SAM is possible, there exists a sequence s _s_o s

′ such that
c′ � s′.

3. If a transition c→o c
′ of the SAM is possible, there exists a sequence s _N

o s′ such that
0 < N ≤ 4 and c′ � s′.

4. No transition _ is possible at the state s′ if c′ = (v,A)ctxt.

They key ingredients for the proof are the decomposition properties in Lemma 7 as well
as the other decomposition properties from the following Lemma 10. Application relies on
reachable configurations being closed and well-named, in the sense of Lemma 6.

I Lemma 10 (decomposition). Let M0,M be multisets of variables.

1. The translation A†M of a substitution context A has a unique decomposition A‡M

|M

|FVM (A)
.

2. If no variables in M0 are captured in an evaluation context E, the translation E†M0+M is

equal to the graph E†M

|M0

|M

|FVM (E)
.

CSL 2017

32:12 The Dynamic Geometry of Interaction Machine: A Call-by-Need Graph Rewriter

3. If each variable in M0 is captured in an evaluation context E exactly once, the transla-

tion E†M0+M has a unique decomposition
E††M

CM0+M1

Cut

| M

|FVM0+M (E)

|

M0 | M1

|

supp(M0)
|

. The multiset

M1 satisfies supp(M1) ⊆ supp(M0), and the thick CM0+M1-node represents a family
{CM0(x)+M1(x)}x∈supp(M0) of C-nodes.

The proofs for 1. and 2. are by straightforward inductions on A and E respectively. The
proof for 3. is by induction on the dimension of M0, i.e. the size of the support set supp(M0).

4 Time Cost Analysis of Rewrites-First Interleaving

Our time cost analysis of the DGoIM_ follows Accattoli’s recipe, described in [2, 1], of
analysing complexity of abstract machines. This section recalls the recipe and explains how
it applies to the DGoIM_.

The time cost analysis focuses on how efficiently an abstract machine implements an
evaluation strategy. In other words, we are not interested in minimising the number of
β-reduction steps simulated by an abstract machine. Our interest is in making the number
of transitions of an abstract machine “reasonable,” compared to the number of necessary
β-reduction steps determined by a given evaluation strategy.

Accattoli’s recipe assumes that an abstract machine has three groups of transitions: 1)
“β-transitions” that correspond to β-reduction in which substitution is delayed, 2) transitions
perform substitution, and 3) other “overhead” transitions. We incorporate this classification
using the labels b, s, o of transitions.

Another assumption of the recipe is that, each step of β-reduction is simulated by a single
transition of an abstract machine, and so is substitution of each occurrence of a variable.
This is satisfied by many known abstract machines including the SAM, however not by
the DGoIM_. The DGoIM_ has “finer” transitions and can take several transitions to
simulate a single step of reduction (hence a single transition of the SAM, as we can observe
in Theorem 9). In spite of this mismatch we can still follow the recipe, thanks to the weak
simulation �. It discloses what transitions of the DGoIM exactly correspond to β-reduction
and substitution, and gives a concrete number of overhead transitions that the DGoIM_

needs to simulate β-reduction and substitution. The recipe for the time cost analysis is:
1. Examine the number of transitions, by means of the size of input and the number of

β-transitions.
2. Estimate time cost of single transitions.
3. Derive a bound of the overall execution time cost.
4. Classify an abstract machine according to its execution time cost.
Consider now the following taxonomy of abstract machines introduced in [1].

I Definition 11 (classes of abstract machines [1, Definition 7.1]). 1. An abstract machine is
efficient if its execution time cost is linear in both the input size and the number of
β-transitions.

2. An abstract machine is reasonable if its execution time cost is polynomial in the input
size and the number of β-transitions.

3. An abstract machine is unreasonable if it is not reasonable.

K. Muroya and D. R. Ghica 32:13

The input size in our case is given by the size |t| of a term t, inductively defined by:

|x| := 1 |λx.t| := |t|+ 1
|t u| := |t|+ |u|+ 1 |t[x← u]| := |t|+ |u|+ 1.

Given a sequence r of transitions (of either the SAM or the DGoIM_), we denote the number
of transitions with a label x in r by |r|x. Since we use the fixed set {b, s, o} of labels, the
length |r| of the sequence r is equal to the sum |r|b + |r|s + |r|o.

We first estimate the number of transitions of the SAM, and then derive estimation for
the DGoIM_.

I Lemma 12 (quantitative bounds for SAM). Each execution e from an initial configuration
(t0, E)term, comes with inequalities: |e|s ≤ |e|b and |e|o ≤ |t0| · (5 · |e|b + 2) + (3 · |e|b + 1).

The proof is analogous to the discussion in [2, Section 11].
Combining these bounds for the SAM with the weak simulation �, we can estimate the

number of transitions of the DGoIM_ as below.

I Proposition 13 (quantitative bounds for DGoIM_). Let r : s0 _∗ s be a sequence of
transitions of the DGoIM_. If there exists an execution (t0, 〈·〉)term →∗ (t, E) of the SAM
such that s0 � (t0, 〈·〉)term and s � (t, E), the sequence r comes with inequalities|r|s ≤ |r|b
and |r|o ≤ 4 · |t0| · (5 · |r|b + 2) + (16 · |r|b + 4).

This is a direct consequence of Lemma 12 and Theorem 9.
We already discussed time cost of single transitions of the DGoIM in Section 2.1. It is

worth noting that the discussion in Section 2.1 is independent of any particular choice of a
rewriting and token-passing interleaving strategy.

Theorem 14 below gives a bound of execution time cost of the DGoIM_. We can conclude
that, according to Accattoli’s taxonomy (see Definition 11), the DGoIM_ is “efficient” as an
abstract machine for the call-by-need evaluation.

I Theorem 14 (time cost). Let C,D be fixed natural numbers, and r : s0 _∗ s be a sequence
of transitions of the DGoIM_. If there exists an execution (t0, 〈·〉)term →∗ (t, E) of the SAM
such that s0 � (t0, 〈·〉)term and s � (t, E), the total time cost T (r) of the sequence r satisfies:

T (r) = O((|t0|+ C) · (|r|b +D)).

I Corollary 15. The DGoIM_ is an efficient abstract machine, in the sense of Definition 11.

5 Conclusions

We introduced the DGoIM, which can interleave token passing with graph rewriting informed
by the trajectory of the token. We focused on the rewrites-first interleaving and proved that
it enables the DGoIM to implement the call-by-need evaluation strategy. The quantitative
analysis of time cost certifies that the DGoIM_ gives an “efficient” implementation in the
sense of Accattoli’s classification. The proof of Theorem 14 pointed out that eliminating
and copying !-boxes are the two main sources of time expenditure. Our results are built on
top of a weak simulation of the SAM, that relates several transitions of the DGoIM to each
computational task such as β-reduction and substitution.

The main feature of the DGoIM is the flexible combination of interaction and rewriting.
We here briefly discuss how the flexibility can enable the DGoIM to implement evaluation
strategies other than the call-by-need.

CSL 2017

32:14 The Dynamic Geometry of Interaction Machine: A Call-by-Need Graph Rewriter

As mentioned in Section 1.2, the passes-only interleaving can yield an ordinary token-
passing abstract machine that is known to implement the call-by-name evaluation. We
note that the DGoIM presented in Section 2 is only the part relevant to the rewrites-first
interleaving. We omitted some pass transitions and data structures carried by a token, that
are known in ordinary token-passing abstract machines but irrelevant to the rewrites-first
interleaving. For example Figure 3 does not show pass transitions that let a token go through
auxiliary doors of a !-box, because in the rewrites-first interleaving, auxiliary doors are
eliminated as soon as a token visits their corresponding principal door. Accordingly a token
does not carry so-called “exponential signatures” that make sure the token enters and exits
!-boxes appropriately.

The only difference between the call-by-need and the call-by-value evaluations lies in
when function arguments are evaluated. In the DGoIM, this corresponds to changing a
trajectory of a token so that it visits function arguments immediately after it detects function
application. Therefore, to implement the call-by-value evaluation, the DGoIM can still use
the rewrites-first interleaving, but it should use a modified set of pass transitions. Further
refinements, not only of the evaluation strategies but also of the graph representation could
yield even more efficient implementation, such as full lazy evaluation, as hinted in [25].

Our final remarks concern programming features that have been modelled using token-
passing abstract machines. Ground-type constants are handled by attaching memories to
either nodes of a graph or a token, in e.g. [18, 17, 3] – this can be seen as a simple form
of graph rewriting. Algebraic effects are also accommodated using memories attached to
nodes of a graph in token machines [17], but their treatment would be much simplified in
the DGoIM as effects are evaluated out of the term via rewriting.

Acknowledgements. We are grateful to Ugo Dal Lago and anonymous reviewers for en-
couraging and insightful comments on earlier versions of this work.

References
1 Beniamino Accattoli. The complexity of abstract machines. In WPTE 2016, volume 235

of EPTCS, pages 1–15, 2017.
2 Beniamino Accattoli, Pablo Barenbaum, and Damiano Mazza. Distilling abstract machines.

In ICFP 2014, pages 363–376. ACM, 2014.
3 Ugo Dal Lago, Claudia Faggian, Benoît Valiron, and Akira Yoshimizu. Parallelism and

synchronization in an infinitary context. In LICS 2015, pages 559–572. IEEE, 2015.
4 Ugo Dal Lago, Claudia Faggian, Benoît Valiron, and Akira Yoshimizu. The Geometry of

Parallelism: classical, probabilistic, and quantum effects. In POPL 2017, pages 833–845.
ACM, 2017.

5 Ugo Dal Lago and Marco Gaboardi. Linear dependent types and relative completeness. In
LICS 2011, pages 133–142. IEEE Computer Society, 2011.

6 Ugo Dal Lago and Barbara Petit. Linear dependent types in a call-by-value scenario. In
PPDP 2012, pages 115–126. ACM, 2012.

7 Ugo Dal Lago and Ulrich Schöpp. Computation by interaction for space-bounded functional
programming. Inf. Comput., 248:150–194, 2016.

8 Vincent Danos and Laurent Regnier. Local and asynchronous beta-reduction (an analysis
of Girard’s execution formula). In LICS 1993, pages 296–306. IEEE Computer Society,
1993.

9 Vincent Danos and Laurent Regnier. Reversible, irreversible and optimal lambda-machines.
Elect. Notes in Theor. Comp. Sci., 3:40–60, 1996.

K. Muroya and D. R. Ghica 32:15

10 Olivier Danvy and Ian Zerny. A synthetic operational account of call-by-need evaluation.
In PPDP 2013, pages 97–108. ACM, 2013.

11 Maribel Fernández and Ian Mackie. Call-by-value lambda-graph rewriting without rewrit-
ing. In ICGT 2002, volume 2505 of LNCS, pages 75–89. Springer, 2002.

12 Dan R. Ghica. Geometry of Synthesis: a structured approach to VLSI design. In POPL
2007, pages 363–375. ACM, 2007.

13 Dan R. Ghica and Alex Smith. Geometry of Synthesis III: resource management through
type inference. In POPL 2011, pages 345–356. ACM, 2011.

14 Dan R. Ghica, Alex Smith, and Satnam Singh. Geometry of Synthesis IV: compiling affine
recursion into static hardware. In ICFP, pages 221–233, 2011.

15 Jean-Yves Girard. Linear logic. Theor. Comp. Sci., 50:1–102, 1987.
16 Jean-Yves Girard. Geometry of Interaction I: interpretation of system F. In Logic Col-

loquium 1988, volume 127 of Studies in Logic & Found. Math., pages 221–260. Elsevier,
1989.

17 Naohiko Hoshino, Koko Muroya, and Ichiro Hasuo. Memoryful Geometry of Interaction:
from coalgebraic components to algebraic effects. In CSL-LICS 2014, pages 52:1–52:10.
ACM, 2014.

18 Ian Mackie. The Geometry of Interaction machine. In POPL 1995, pages 198–208. ACM,
1995.

19 Robin Milner. Communication and concurrency. PHI Series in Computer Science. Prentice
Hall, 1989.

20 Koko Muroya and Dan R. Ghica. The dynamic geometry of interaction machine: A call-
by-need graph rewriter. CoRR, arXiv:1703.10027, 2017. URL: https://arxiv.org/abs/
1703.10027.

21 Koko Muroya, Naohiko Hoshino, and Ichiro Hasuo. Memoryful Geometry of Interaction II:
recursion and adequacy. In POPL 2016, pages 748–760. ACM, 2016.

22 Ulrich Schöpp. Computation-by-interaction with effects. In APLAS 2011, volume 7078 of
Lect. Notes Comp. Sci., pages 305–321. Springer, 2011.

23 Ulrich Schöpp. Call-by-value in a basic logic for interaction. In APLAS 2014, volume 8858
of Lect. Notes Comp. Sci., pages 428–448. Springer, 2014.

24 Ulrich Schöpp. Organising low-level programs using higher types. In PPDP 2014, pages
199–210. ACM, 2014.

25 François-Régis Sinot. Call-by-name and call-by-value as token-passing interaction nets. In
TLCA 2005, volume 3461 of Lect. Notes Comp. Sci., pages 386–400. Springer, 2005.

26 François-Régis Sinot. Call-by-need in token-passing nets. Math. Struct. in Comp. Sci.,
16(4):639–666, 2006.

CSL 2017

https://arxiv.org/abs/1703.10027
https://arxiv.org/abs/1703.10027

	Introduction
	Token-passing Abstract Machines for Lambda-calculus
	Interleaving Token Passing with Graph Rewriting
	Contributions

	The Dynamic GoI Machine
	Cost Analysis of the DGoIM

	Weak Simulation of the Call-by-Need Storeless Abstract Machine
	Time Cost Analysis of Rewrites-First Interleaving
	Conclusions

