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H I G H L I G H T S

• The mass adoption of electric vehicles (EVs) is expected in the years ahead.

• The CoMIT framework models the impact of EV adoption of critical materials demand.

• By 2030, relative to 2015, demand for lithium and cobalt will increase 18 and 37 times.

• China is expected to be an increasing important buyer of inputs to EV manufacturing.

• Without changes to supply chains the widespread deployment of EV will be constrained.
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A B S T R A C T

Mass adoption of electric vehicles (EVs) is anticipated in the years ahead, driven primarily by policy incentives,
rising incomes, and technological advancements. However, mass adoption is predicated on the availability and
affordability of the raw materials required to facilitate this transformation. The implications of material
shortages are currently not well understood and previous research tends to be limited by weak representation of
technological change, a lack of regional disaggregation, often inflexible and opaque assumptions and drivers,
and a failure to place insights in the broader context of the raw materials industries. This paper proposes a
CoMIT (Cost, Macro, Infrastructure, Technology) model that can be used to analyse the impact of mass EV
adoption on critical raw materials demand and forecasts that, by 2030, demand for vehicles will increase by
27.4%, of which 13.3% will be EVs. The model also predicts large increases in demand for certain base metals,
including a 37 and 18-fold increase in demand for cobalt and lithium (relative to 2015 levels), respectively.
Without major changes in certain technologies, the cobalt and lithium supply chains could seriously constrain
the widespread deployment of EVs. Significant demand increases are also predicted for copper, chrome and
aluminium. The results also highlight the importance of China in driving demand for EVs and the critical ma-
terials needed to produce them.

1. Introduction

Limiting the damage from climate change is a major challenge fa-
cing the global economy. The Paris Accord aims to curb emissions of
Carbon Dioxide (CO2) and other Greenhouse Gases (GHGs) in an at-
tempt to keep the average temperature rise under 1.5°C [1,2]. Meeting
these ambitious goals will require mass adoption of environmental
technologies such as renewable power, Carbon Dioxide Capture and
Storage (CCS), [3], and energy-saving household appliances and in-
dustrial equipment [4]. In this context, the electrification of road
transportation represents a major opportunity to reduce emissions [5]
in a sector that currently accounts for around 14% of global GHG

emissions [6].
Policy makers are actively encouraging the mass adoption of EVs

with the express intention, in many cases, of replacing sales of Internal
Combustion Engine Vehicles (ICEVs) within a given time frame (e.g.
recently changed to 2035 in the United Kingdom). Among the gov-
ernments active in promoting EVs are Canada, China, Finland, France,
Germany, India, Japan, Mexico, Netherlands, Norway, Sweden, the
United Kingdom (UK) and the United States (US) [7]. Such government
led policy initiatives are beginning to catalyse both EV production and
sales. For example, the global year-on-year growth rate for new EVs
reached 54% in 2017 with global sales exceeding one million units [7].
In response to an anticipated rapid increase in demand, auto makers
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and their suppliers have made plans for large scale investments in EV
related production capacity.1 However, such a rapid transformation
will require a step change in the demand for, and supply of, the raw
materials that are used in the EV production process and raises ques-
tions regarding the availability and cost of these raw materials.

The purpose of this paper is to analyse the complex relationships
between the production of EVs, material demand, and the global supply
chain. This is an important area of research given the resource intensity
of EV production, typically requiring, for example, 3–4 times as much
copper as a traditional gasoline vehicle. Likewise, the batteries, central
to all EVs, are commonly rich in materials such as cobalt, lithium,
nickel, manganese and graphite. There are at least three reasons why
the supply of raw materials could be a bottleneck for the transition to a
low-carbon future. First, the growth in demand for these technologies is
likely to be exponential, requiring a step change in resource industry
investment for certain materials. Second, the uneven spatial distribu-
tion in the supply and demand for raw materials raises the potential for
supply chain disruption caused, for example, by natural disasters,
pandemics such as COVID-19, trade wars, civil conflicts and so on. Such
concerns are particularly relevant when there is a mismatch between
demand and supply at any stage of, what are oftentimes, highly com-
plex mineral value chains. In this regard, it is noteworthy that the vast
majority of ‘downstream’ battery chemical and cell manufacturing ca-
pacity is currently situated in a small number of countries such as
China, Japan and South Korea. Third, there are a range of potential
market failures and barriers that may limit the ability of different pri-
mary resource sectors to respond rapidly to rising demand (for example,
extended project development lags, financial constraints or environ-
mental concerns).

Hence, there is growing awareness of the need to understand and
manage supply side risks. For example, the US government has an of-
ficial list of the 35 minerals that it defines as ‘critical’ in the sense that

they are essential to economic and national security, but are exposed to
the risk of potential supply disruption [9].2 Similar concerns in other
regions of the world mean that countries are increasingly seeing the
strategic need to secure access to the raw materials that are necessary to
support planned increases in investment in certain areas of advanced
manufacturing. These considerations have the potential to shape both
future and current trade negotiations and national investment strategies
across both resource consuming and producing countries. Rapid growth
in demand for the materials associated with the EV revolution, coupled
with the concentration of the supply chain in certain countries and
regions, is likely to draw these issues into still sharper focus in the
coming months and years. The recent COVID-19 pandemic is likely to
further accelerate these concerns.

In the existing literature, a number of studies have examined supply
criticality issues associated with the growth of green technologies. At
the global level Dawkins, Chadwick, Roelich and Falk [10], assert that,
of three metal-reliant technologies, namely Photovoltaics (PV), wind
power, and plug-in vehicles, these issues are of most concern in the case
of PV (a conclusion also supported by Elshkaki and Graedel [11]). Other
studies identify potential risks associated with a broader set of tech-
nologies and commodities. Vidal, Goffé and Arndt [12], for example,
emphasise the significant increase in demand for base metals and raw
materials arising from the rapidly advancing deployment of both wind
and solar PV technologies. Fizaine and Court [13] propose a sensitivity
metric that shows how the degradation of metal ore grades could sig-
nificantly affect the return on investment in wind, solar, hydropower,
and nuclear power. Similarly, Tokimatsu, Wachtmeister, McLellan,
Davidsson, Murakami, Höök, Yasuoka and Nishio [14] raise concerns
regarding the metal requirements for the production of PV, nuclear and
plug-in vehicles while Grandell, Lehtilä, Kivinen, Koljonen, Kihlman

Nomenclature

Abbreviations

kg kilogram (s)
km kilometre (s)
kt thousand tonne (s) (106 kg)
kVA kilovolt-ampere (s)
kW kilowatt (s)
kWh kilowatt-hour (s)
MW Megawatt (s)
mt million tonne (s) (109 kg)

Acronyms

AL Aluminium
BEV Battery Electric Vehicle
CAFE Corporate Average Fuel Economy
CAGR Compound Annual Growth Rate
CCS Carbon dioxide Capture and Storage
CO Cobalt
CR Chrome
CU Copper
EOL End-of-life
EV Electric Vehicle
FCEV Fuel Cell Electric Vehicle

FE Steel
GDP Gross Domestic Product
GHG Green-house Gas
HDV High Duty Vehicle
HEV Hybrid Electric Vehicle
ICE Internal Combustion Engine
ICEV Internal Combustion Electric Vehicle
LDV Light Duty Vehicle
LFP Lithium Iron Phosphate
LI Lithium
LIB Lithium-ion batteries
LMO Lithium Manganese Oxide
MN Manganese
NCA Lithium Nickel Cobalt Aluminium Oxide
NEV New Energy Vehicle
NI Nikel
NiMH Nickel Metal Hydride
NMC Lithtium Nickel Manganese Cobalt Oxide
OEM Original Equipment Manufacturer
PHEV Plug-in Hybrid Electric Vehicle
PFCEV Plugin Fuel Cell Electric Vehicle
PV Photovoltaics
TCO Total Cost of Ownership
WAP Working Age Person

1 [8] reports promised investment in EVs of at least $90 billion by large car-
makers from the US ($19 billion), China ($21 billion), and Germany ($52 bil-
lion). Most significantly, Volkswagen announced a plan to invest $40 billion by
2030 in electrifying more than 300 global models.

2 The full list includes aluminium (bauxite), antimony, arsenic, barite, ber-
yllium, bismuth, caesium, chromium, cobalt, fluorspar, gallium, germanium,
graphite (natural), hafnium, helium, indium, lithium, magnesium, manganese,
niobium, platinum group metals, potash, rare earth group elements, rhenium,
rubidium, scandium, strontium, tantalum, tellurium, tin, titanium, tungsten,
uranium, vanadium, and zirconium.
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and Lauri [15] find that critical raw material issues associated with
various energy generation, storage, and mobility technologies have the
potential to constrain the feasibility of the renewable energy scenarios
presented by the IPCC Fifth Assessment Report. WB and EGPS [16]
analyse metal demand associated with wind, solar, and energy storage
batteries under different IEA energy transition scenarios, highlighting
particularly strong demand growth for aluminium, cobalt, iron, lead,
lithium, manganese, and nickel in a ‘2 degree world’. Finally, de
Koning, Kleijn, Huppes, Sprecher, van Engelen and Tukker [17] agree
that decarbonisation of the power generation and automotive sectors
will substantially increase demand for a range of metals but argue that
supply could be increased (although there is a degree of uncertainty
with regards to return on investment, lead times and geopolitical con-
cerns over raw material mining).

In addition to these global studies, demand for the critical raw
materials associated with the transition to a low carbon economy, and
the adoption of green technologies (and associated supply chain issues),
has been analysed from the perspectives of a number of developed
countries, including the US [18,19], the EU [20,21], the UK [22],
Australia [23,19] and Japan [24]. The majority of these studies include
EVs in their calculation, together with their components (including
batteries). Although no published studies have been undertaken for
developing regions, WB and EGPS [16] highlight the potential im-
portance of this issue for resource rich host countries, including coun-
tries in Africa and Latin America, but do not analyse the nature of these
impacts in any detail.

In addition the multiple-technology assessment studies, there is a
body of literature that provides detailed analyses of different low-
carbon technologies. Of these, the electrification of transport receives
considerable attention, in part, because EVs are increasingly dependent
on lithium (a key component of lithium-ion batteries). An early as-
sessment by Gruber, Medina, Keoleian, Kesler, Everson and Wallington
[25] suggests that the supply of lithium, together with active recycling,
is sufficient to support the adoption of EVs, even in the most rapid and
widespread penetration scenario. Grosjean, Herrera Miranda, Perrin
and Poggi [26] share such an optimistic view, but raise concerns about
the geographical concentration of lithium supply. However, Vikström,
Davidsson and Höök [27] claim that lithium could be a constraint for
EV penetration rates if the ambitious electrification scenarios, such as
the Blue Map Scenarios developed by the International Energy Agency,
are to be realised. A review by Speirs, Contestabile, Houari and Gross
[28] highlights the substantial degree of uncertainty surrounding the
parameters used in the existing literature, especially those related to
metal intensity and EV penetration rates, with the uncertainty helping
to explain the mixed conclusions regarding the criticality of lithium to
the future of low-carbon mobility. A different approach is taken by
Narins [29] who argues that ‘lithium scarcity’ is a matter of quality
rather than quantity and that the excitement over future demand re-
lated to EV technologies has led to an overheated market for lithium
and that it will take time for supply to adjust. In an effort to endogenise
the supply chain model of raw materials, Hache, Seck, Simoen, Bonnet
and Carcanague [30] conclude that economic, industrial, geopolitical
and environmental (rather than geological) risks are the primary supply
chain issues that will affect the potential for the mass marketisation of
EVs.3

Despite the growing body of research looking at lithium, the other
important material inputs that go into the production of EVs are less
well researched. For example, an early assessment of EV materials by
Andersson and Råde [40] identifies rare earth elements, vanadium and
cobalt, as critical to the diffusion of EV batteries, and that the pro-
duction of vanadium and cobalt is unlikely to keep pace with the the
increase in global demand. For the EU, Simon, Ziemann and Weil [41]

analyse the relationship between supply and demand for four metals
and suggests that there will be a shortage of lithium and nickel by 2025
while reserves for cobalt and manganese are projected to be more than
sufficient while Sullivan, Kelly and Elgowainy [42] analyse the reduc-
tion in demand for different powertrains and how this changes demand
for steel and aluminium. In a study of supply side risks, EC [43] identify
cobalt, natural graphite and silicon as the materials giving cause for
concern with platinum identified by Spiegel [44], Yang [45], Alonso,
Field and Kirchain [46] as a supply risk for Fuel Cell Electric Vehicles
(FCEVs).

The existing literature has employed various modelling approaches.
However, those models that are available tend to lack a degree of
transparency and consistency that makes it difficult for academics and
policymakers to obtain a complete picture of the outlook for mined
commodities under a wide range of different assumptions underpinning
the global transition to EVs. In terms of geographic scope, global studies
tend not to be detailed enough to address regional concerns while re-
gional specific studies tend to be constructed in isolation from wider
considerations affecting the global market. Other criticality assessments
focus on one or several material market(s), especially those directly
related to EV batteries, but neglect potential interconnections between
different mined commodities. However, in the case of many critical
materials, it is difficult to imagine how sufficient financial resources
could be mobilised without taking into account the competition for
funds from competing markets including those less critical but much
larger in terms of capitalised values such as steel, copper, and alumi-
nium. In addition, the supply of commodities that are rarely mined as a
primary product such as cobalt, is largely dependent on the production
of other metals such as copper and nickel. In terms of transparency,
some models do not disclose the data used and often oversimplify those
factors related to future technical changes in EVs and batteries. Finally,
a number of the projections in the literature appear to be over-reliant
on subjective policy commitments or decarbonisation scenarios ob-
tained from external sources such as the IPCC [6], IEA [47], SDSN and
IDDRI [48], Jacobson et al. [49] that suffer from a lack of visibility and
tend to be rather inflexible with respect to their underlying assumptions
and respective market impacts.

The contribution of this paper is to present a modelling framework
called CoMIT (Cost, Macro, Infrastructure, Technology) that is designed
to address a number of the concerns outlined above. Specifically, a
unified framework is presented that allows for demand to be simulated
for a large number of the raw materials essential for e-mobility in a way
that is transparent, consistent and inclusive of numerous drivers of e-
mobility. These drivers include macroeconomic conditions, infra-
structure, technology, policies and customer behaviour as well as fac-
tors specific to different countries and regions. As a result, the model is
able to generate a set of reliable estimates of future metal demand that
are compatible with various usage objectives and is transparent and
simple to update when new data becomes available.

More specifically, this paper makes the following contributions.
First, it provides a framework for evaluating the key drivers of any EV
market transformation and their impact on the demand for different
metals. Second, the framework includes a degree of regional dis-
aggregation that enables the study of spatial differences in demand
across countries and regions. A regional analysis is also important for
helping to understand the supply chain implications associated with
changes in the patterns of trade in raw materials. Third, the paper
considers eight different mined commodities important for EV and EV
battery production. Fourth, the framework provides a more sophisti-
cated representation of technological change than previous studies have
been able to incorporate, drawing on detailed market intelligence in-
cluding, for example, information on average metal utilisation rates in
vehicles by power train. The metal ‘loadings’ used in the framework are
derived from information on vehicle class, battery size and type, as well
as material substitution possibilities and constraints. Fifth, the frame-
work takes into account potential future supply constraints and cost

3 Other low carbon technologies that have been studied include wind [31],
solar [32–36], CCS [37], nuclear [38], LED lighting [39].
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pressures affecting future materials choices. Finally, the impact of the
EV revolution on raw material demand is placed within the broader
context of raw material supply and investment. The emergence of
‘supply gaps’ is fairly common in the mined resources sector and is a
reflection of the time it takes for firms to respond as market conditions
change. However, some supply gaps are more challenging to close than
others. In order to understand the potential implications of shifting
demand patterns, it is therefore critical to understand the wider market
conditions that shape investment and production decisions.

To briefly summarise the results, when the full model is estimated
over the course of 15 years, it is shown that annual demand for pas-
senger cars, heavy trucks and buses is projected to increase by 27.4%
with the share of EVs increasing from almost zero to 13.3%. As a result,
substantial changes in demand for mined commodities in terms of both
size and structure are predicted. By 2030, demand for cobalt and li-
thium for EVs is projected to far exceed, by up to 37 and 18 times, the

2015 production levels of these commodities, respectively.
Electrification is also projected to increase the amount of nickel and
manganese required for new vehicles by five times 2015 levels. Demand
for aluminium, copper and chrome are also found to increase sig-
nificantly. The sensitivity analysis shows the importance of the Chinese
market to both EV demand and the critical materials needed to produce
them. For example, as the largest market for future EVs, Chinese de-
mand would account for about 68% of global lithium and cobalt de-
mand for transport in 2030.

The remainder of the paper is organised as follow. Section 2 de-
scribes the framework and key equations behind each module. Section
3 lists the sources of data and states the key assumptions. Section 4
illustrates the results and discuss their implication. Section 5 concludes.

Fig. 1. CoMIT framework overview. Note: Our analytic framework is specific for 10 regions × 3 vehicle types × 7 powertrains × 8 mined commodities as detailed in
Section 2.1 and summarised in Supplement Table 1. Section 4 only illustrates and discusses key findings from aggregated results while more disaggregated results are
available upon appropriate request.
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2. CoMIT framework

2.1. Scope and notation

The methodological approach (the CoMIT framework) used in this
paper is summarised in Fig. 1. Fig. 1 shows the four individually defined
modules each of which has a list of inputs and outputs. The modules are
named Cost (Co), Macro (M), Infrastructure (I), and Technology (T).
This framework is able to convert a set of assumptions on the future
dynamics of a range of macroeconomic factors, infrastructure capacity,
demography, markets, policies and technology, to the demand for a
number of metals that are critical to the production of vehicles (electric
and non-electric) and the facilities that are complementary to vehicle
production such as charging poles and hydrogen stations. The model
includes indices for region (i), vehicle type (j), powertrain (k), year (t),
fuel type (f), power source (s) and metal (m) and are now discussed in
more detail.

Geographically, the model divides the globe into ten regions: China
(CHN); India (IND); North America (NAM); Brazil (BRZ); North Asia
Developed (NAD); the Commonwealth of Independent States (CIS);
Western Europe (WEU); the Rest of Europe (REU); Southeast Asia
(SEA); and Other Countries (OTH).4 OTH is treated as a residual with no
EV sales. The region code WTO is used when referring to the ag-
gregation of all regions (the world).

The framework uses annual data from 1980 and provides projec-
tions up to the year 2030. The time scale is important when modelling
an innovative sector such as electrified transportation where break-
throughs are difficult to predict over longer periods. To derive the in-
itial data inputs for the model, real data between 2015, 2016 and 2017
are used.

Three types of vehicle are modelled: Light Duty Vehicles (LDVs!);
High Duty Vehicles (HDVs!); and Buses (BUSes). When required, HDVs
can also be split into Light Trucks (HDVLT) and Heavy Trucks
(HDVHT). Seven different powertrains are considered. For traditional
vehicles that only use an Internal Combustion Engine (ICE) for pro-
pulsion, differentiation is based on fuel types which are coded as ICE
PETROL and ICE DIESEL. For vehicles that use both ICE and electric
motors, the differentiation is between Hybrid Electric Vehicles (HEVs),
which can be charged by the ICE only and Plug-in Hybrid Electric
Vehicles (PHEVs), which can be connected to the grid for charging.5

Battery Electric Vehicles (BEVs) are referred to as those that have no
ICE and are dependent on batteries that rely on grid charging. Fuel cell
electric vehicles (FCEVs) use hydrogen fuel cells to power their electric
motors and Plugin Fuel Cell Electric Vehicles (PFCEVs) combine fea-
tures of BEVs and FCEVs. In the paper, EVs are referred to as a com-
bination of PHEVs, BEVs, FCEVs and PFCEVs. In terms of charging in-
frastructure, CHARGE is defined as those vehicles that need chargers
including PHEVs, BEVs, PFCEVs, and HYDRO is defined as those ve-
hicles that require hydrogen charging stations including FCEVs and
PFCEVs.

Four types of fuel are considered: Diesels (DIE); Petrol (PET);
Electricity (ELE); and Hydrogen (HYD). To model the source of the
electricity used to charge the batteries, three non-renewable sources are
included: Coal (COA); Gas (GAS); and Oil (OIL).6 For the output vari-
ables, the analysis includes the demand for eight different metals,
namely: Aluminium (AL); Cobalt (CO); Chrome (CR); Copper (CU);

Lithium (LI); Manganese (MN); Nickel (NI); and Steel (FE). These me-
tals were selected because they are used, to a greater or lesser extent, in
the production of vehicles and are also important commodity markets
in their own right. Details of the notation used in this paper can be
found in Supplementary Table 1.

The following sections discuss each module in turn.

2.2. Cost module (C)

The relatively high cost of EVs is currently preventing the wholesale
replacement of ICEVs. However, cost differences could be reduced
through the use of targeted decarbonisation policies to reduce purchase
prices and/or technological advances that improve the relative perfor-
mance of EVs.

The Cost module of the CoMIT framework predicts the future
powertrain mix by modelling the purchasing behaviour of customers
using the Total Cost of Ownership (TCO) method. TCO has been widely
used to evaluate the cost competitiveness of different vehicle technol-
ogies and to analyse the effectiveness of different policies implemented
to support EV adoption. For example, for the US, TCO is used to model
the whole-life costs of PHEVs [50] and hybrid cars [51]. For China, TCO
is used to study the the competitiveness of BEVs [52] while it has been
used to analyses the EV market for Germany [53], and Italy [54].

The key assumption in any TCO study is that consumers are able to
take into account all of the different monetary costs that will occur over
the life cycle of the product. Therefore, anything that impacts the
current vehicle price or current and future operating costs, will affect
the relative competitiveness of the different powertrains. The TCO for
each powertrain j is calculated as the sum of net present value (NPV)
discounted by the discount rate rjt for four different components: the
upfront payment needed to acquire the vehicle (UpfPayijkt); main-
tenance costs, roughly estimated as a share (IniManijkt) of the initial
price of the vehicle (Priijkt); total annual operating costs ( +OptPayijk t t( ))
during the use phase; and finally the remaining value of the vehicle net
the scrapping cost at the end of its life (ScpValijkt).

7 Hence, the TCO for a
given vehicle is given by:

= + × +
+

+
+=

+

TCO

UpfPay IniMan Pri
OptPay

r
ScpVal

r(1 ) (1 )

ijkt

ijkt ijkt ijkt
t

T
ijk t t

it
t

ijkt

it
T

0

1
( )

(1)

In Eq. (1), =T AvgLifijt is the life span of a typical vehicle type j in a
given regional market i and ScpValijkt is assigned a negative value
(which is to say there is a positive scrappage value so it reduces the
TCO). The upfront payment is computed from the vehicle price (Priijkt),
tax rate (VATijkt), subsidy (SubFeeijkt), registration fees (RegFeeijkt) and
tailpipe compliance cost (TaiFeeijkt), such that:

= × + + +UpfPay Pri VAT SubFee RegFee TaiFee(1 )ijkt jkt ijkt ijkt ijkt ijkt

(2)

The operating cost includes an annual cost for fuel (FuePayijkt), a carbon
tax cost (CabPayijkt) and a road tax cost (ActFeeijkt) such that:

= + +OptPay FuePay CabPay ActFeeijkt ijkt ijkt ijkt (3)

The first two components in Eq. (3) depend on the annual consumption
of each fuel type f (FueConijktf ). In turn, consumption relies on the an-
nual mileage travelled (AnnMilijk), the share of vehicles operated by
electricity (EleMilijkt) and the amount of fuel required to deliver one
mile travelled (FueEffijkt) such that:

4 Hereafter, the geographical unit is referred to a region although strictly
speaking, China, India and Brazil are countries.

5 For some models, ‘hybrid’ vehicles are split based on fuel types they use, to
give HEV PETROL, HEV DIESEL, PHEV PETROL, and PHEV DIESEL.

6 Renewable energy sources are assumed to have a zero-carbon content and
hence are excluded from the calculations of the carbon content of electricity.
However, it is assumed that over time an increasing share of electricity is de-
rived from renewable energy sources.

7 Following common practice in the literature, a discount rate of 5% is used in
the baseline projection. In the sensitivity analyses alternative discount rates of
3% and 10% are used.
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FueCon
AnnMil EleMil FueEff f ELE
AnnMil EleMil FueEff f ELE

f ELE PET DIE HYD

for
(1 ) for

for { , , , }

ijktf
ijk ijkt ijktf

ijk ijkt ijktf

(4)

In addition to fuel consumption, to model the projected annual fuel cost
requires a projection of future fuel prices (FuePriitf ) and fuel taxes
(FueTaxitf ) such that:

= × +FuePay FueCon FuePri FueTax[ ( )]ijkt

f

jktf itf itf (5)

To estimate the carbon tax for the annual operation of powertrain k Eq.
(6) is estimated where CO2itf is the CO2 emissions from the consump-
tion of a unit of fuel f and CO Tax2 it is the carbon tax rate in region i
such that:

= × ×CabPay FueCon CO CO Tax( 2 ) 2ijkt

f

ijktf itf it
(6)

It is important to note that the actual CO2 content of electricity depends
on the power mix that generates the electricity for the grid. For sim-
plicity, the analysis in this paper considers three sources of energy: coal;
natural gas; and oil, assuming that that the other sources of electricity
in the power mix (including renewable energy sources) are carbon
neutral. The CO2 content of electricity is then computed as the average
CO2 intensity of each power source (CO2its), weighted by their share in
the power mix (EleShaits) and is given by:

=CO CO
s COA GAS OIL
2 ( 2 )

for { , , }
it
ELE

s

its

(7)

Hence, to compare the TCOs of different powertrains, it is important
to benchmark each powertrain’s TCO with the TCO of the most popular
powertrains (basek), which are ICE PETROL for LDV, and ICE DIESEL for
HDV and BUS, and compute the Inverse Relative Total Cost of
Ownership (InvRTCO) given by:

=InvRTCO
TCO
TCOijkt

ijt
base

ijkt

j

(8)

=
=

base
j LDV

j HDV BUS
ICE PETROL for
ICE DIESEL for { , }j

A higher InvRTCOijkt means that powertrain k has become cheaper re-
lative to the conventional ICE powertrain and hence is expected to gain
a larger market share in total sales of vehicle type j. It should be noted
that at this stage, the model separates HDV into HDVLT (light trucks)
and HDVHT (heavy trucks). The above equation applies to HDVHT
only. For HDVLT, the same relative costs as LDV are assumed:

=InvRTCO InvRTCOikt
HDVLT

ikt
LDV .

The next step is to project the market share of EVs and HEVs using
an autoregressive model that incorporates a logistic function of
InvRTCO. Hence, the powertrain share (PowShaijkt) is given by:

Fig. 2. The share of BEV in LDV market as a logistics function of Inverse Relative Total Cost of Ownership (InvRTCO). Note: This figure illustrates an example of
logistics functions used to simulate market shares of different powertrains as presented in Eq. (9). For the illustrative purpose, this figure assumes zero market share
in the previous year and as a such, the market share simulated by an AR(1) process is totally dependent on the Inverse Relative Total Cost of Ownership (InvRTCO).
The figure legend is specific for each logistic shape including a region code i and a pair of parameters ( , )ijk ijk defined in Eq. (9), where other indexes are fixed

=j LDV and =k BEV . The midpoints of all logistic shapes in this figures are at 1.2.
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= × +

×

= = =

+ ×

PowSha PowSha

j BEV HEV PHEV FCEV PFCEV
Inv Inv Inv

(1 )

for { , , , , }
* * 1.2; * 1.3

ijkt ijk ijkt ijk

exp InvRTCO Inv

LDV HDV BUS

1

1
1 [ ( )]ijk ijkt j

(9)

The AR(1) model is characterised by the parameter ijk
< <(0 1)ijk , that captures the stickiness of the market with respect to

price. A larger value of ijk means more influence is given to the pre-
vious market share (PowShaijkt 1) and a lower influence is given to
RTCO. The logistic function

+ ×exp InvRTCO Inv
1

1 [ ( )]ijk ijkt j
has an S shape

characterised by two parameters: the steepness of the curve ( ijkt); and
the midpoint of the curve (Invj ), which is the point at which the market
share achieves the fastest growth rate. The assumption underlying this
choice of functional form is that a powertrain starts to gain market
share when it is reasonably cheap and then the growth rate continues to
accelerate up until a point is reached where most people realize that it
has a lower TCO. Then, if it is cheap enough, the growth rate of market
share will gradually decline as the market share approaches 100%.
Based on insights from historical data, a midpoint of 1.2 is chosen for
LDVs and HDVs, and 1.3 for BUS. Steepness, ijk, is calibrated using
historical values for each powertrain. For powertrains with little or no
historical data a series of sensitivity tests are run on the estimated va-
lues and the one that seems most reasonable, taking into account the
trend in RTCO, the current market trend, raw material constraints and
infrastructure accessibility, is chosen. To illustrate the approach, Fig. 2
presents the market share of LDV BEVs for a range of different values of
InvRTCO assuming zero sales using Eq. (9) and parameters calibrated
for each of the ten regions.

For the incumbent technology (ICE), the market share as the re-
sidual of EVs is simulated:

= ×

=

=

PowSha PowSha

k ICE ICEPETROL ICEDIESEL

PowSha PowSha

(1 )

for { , }

ijkt
PowSha
PowSha ikt

NON ICE

ijt
NON ICE

k ICE

ijkt

ijkt

ikt
ICE

1

1

(10)

An exception, in this paper, is how LDVs for China (CHN) are
modelled, which is not estimated using Eq. (10). The future growth in
passenger EVs in China is expected to be driven largely by the dual
credit system. This newly introduced policy replaces the subsidy
scheme for EVs, which is scheduled to end in 2020. The importance
given to this policy and the relative size of the Chinese market means it
is necessary to model it separately (see Supplementary Table 2). For
region OTH, the EV market is not modelled, but it is assumed that the
market mix (including ICE PETROL and ICE DIESEL) is unchanged
overtime. In particular, the powertrain mix of HDVs is calculated as the
average of the powertrain mix of HDVLT and HDVHT by assuming a
time-invariant split between the two (HDVSPLITi) such that:

= × × ×
PowSha

HDVSPLIT PowSha HDVSPLIT PowSha(1 )
ikt
HDV

i ikt
HDVLT

i ikt
HDVHT

(11)

Once the powertrain mix, based on the costs of ownership across
regions and time, has been calculated, the next step is to introduce
broader macroeconomic drivers of the overall fleet size.

2.3. Macro (M) module

The purpose of the macro (M) module is to simulate the demand for
new vehicles based on various macro-drivers. To briefly summarise, it is
assumed that the growth of the vehicle fleet follows the economic and
population growth rates of a region. The vehicle fleet size is also related
to road capacity (congestion) and the development of public transport
(i.e. rail). Subject to these broader trends, the demand for new vehicles

is based on fleet growth and the demand for replacement vehicles.
The first stage of the macro module is to predict the fleet size for

each type of vehicle. More specifically, the LDV adoption rate for region
i and year t, denoted uit

LDV , is the average number of cars owned by a
working age adult and is given by:

= + × +

× ×
×

u
µ u

y
y

y log C

(1 )

0.5( )
¯ ( )

it
LDV

i
LDV

i
LDV

it
LDV

i
LDV

i
LDV

it
LDV it

LDV

LDV
C it

1

2

it (12)

The first term, µi
LDV , is a time-invariant parameter that captures

region-specific trends. The second and the third terms model the
stickiness of the adoption rate [55]. The Calvo method is widely used to
model macro-variables that are thought to exhibit sluggish behaviour.
In this analysis, it is assumed that, for a given year, that LDV ownership
status is the same as the previous year with a probability of i

LDV

( < <0 1i
LDV ). When an individual considers future LDV ownership,

they take into account both their current income and the general con-
dition of current infrastructure (i.e. levels of congestion).

At the aggregate level, changes in car ownership are modelled at the
regional level as a quadratic function of the log of Gross Domestic
Product (GDP) per working age person (WAP), denoted by yit

LDV , and
the responsiveness of the adoption rate to income captured by an
elasticity parameter i

LDV . This functional form implies that when a
country or region becomes richer, car ownership will increase.
However, the functional form also implies that as roads become more
crowded then the rate of increase in car ownership will begin to decline
and eventually car ownership will fall when GDP per WAP reaches a
critical point and congestion becomes a major constraint.

To take into account the fact that China and India are likely to
become congested before they get rich, the turning point is modelled by

×y log C¯ ( )LDV
C itit , where ȳLDV is an universal GDP per WAP level (in

log form) optimal for LDV adoption, adjusted by a congestion factor
×log C( )C itit , which is specific to each region.8

The optimal GDP per WAP level is calibrated at $54,600 (2010 USD)
for all countries, except for CIS, which is given a value of 33,100 (2010
USD).9 More specifically, Cit is a congestion score, ranging from 1 (less
congested) to 5 (more congested). All 360 cities with a population over
1 million are considered and allows for demographic heterogeneity
within each region. For each city, four locations are chosen in four
directions that are all five kilometres from the city centre. The average
of the estimated travelling time from these four locations to the city
centre at 8.30 a.m. is then calculated, and then average travelling time
is weighted by the population for each city in a region to get a regional
average travelling time. Congestion at each region is scored from 1 (less
congested) to 5 (most congested), corresponding to five ranges of
average travelling time (in minutes): [21,23); [23,25); [25;27); [27,29);
[29, ). The coefficient Cit is a specific parameter calibrated to the
value of Cit.

Similarly, the adoption rates of HDV and BUS are modelled by Eqs.
(13) and (14), respectively, and given by:

8 The function =
×

f y y( )it
LDV

it
LDV yit

LDV

yLDV log Cit Cit

0.5( )2

¯ ( )
is at its maximum value

where = 0f yit
LDV

yit
LDV

( )
, which means =

×
1 0yit

LDV

yLDV log Cit Cit¯ ( )
or

= ×y y log C¯ ( )it
LDV LDV

Cit it .
9 A justification for this exception is that the cold weather and the demand to

travel long distances when public transportation is not sufficiently developed
means that passenger vehicles are essential even at relatively lower income
levels.

B. Jones, et al. Applied Energy 280 (2020) 115072

7



= + × +

× ×
×

u
µ u

y
y

y log C

(1 )

0.5( )
¯ ( )

it
HDV

i
HDV

i
HDV

it
HDV

i
HDV

i
HDV

it
HDV it

HDV

HDV
C it

1

2

it (13)

= + × +

× ×
+ ×

u
µ u

y
y

y R

(1 )

0.5( )
¯

it
BUS

i
BUS

i
BUS

it
BUS

i
BUS

i
BUS

it
BUS it

BUS

BUS
R it

1

2

it (14)

There are several differences to the LDV adoption rate given by Eq.
(12). For HDVs, individual income yit

HDV is measured by industrial
production per head, under the assumption that HDVs are used for
industrial activity and the optimal value ȳHDV is set at $30,000 (2010
USD). For BUSs the adoption rate, uit

BUS, is measured as the number of
buses per capita and correspondingly, yit

BUS and ȳBUS are GDP per capita
and its optimal value, respectively. These numbers reflect the fact that
buses serve the general public and not just the working age population.
In addition, historical data suggest no significant correlation between
BUS ownership and congestion. Instead, research has revealed that the
adoption of passenger railways, in tandem with economic development,
has a greater effect on bus ownership, in both long distance travel and
daily commuting. Hence, a rail transport development level score Rit is
used to adjust the turning point of yit

BUS. The indicative variable Rit ,
takes three values −1, 0, 1, whether a railway service, a possible
substitute for buses in a particular region, is considered to be mature,
sufficient or insufficient. The signs imply a negative, neutral or positive
impact on the adoption rate of buses. The ratio of the annual number of
passengers carried by the railway system (including light tracks) to total
population is used as well as three thresholds suggested by cross sec-
tional data. If the ratio is below 1 (that is, each person on average takes
fewer than 1 trip by rail each year), it suggests an insufficient passenger
railway system, thus boosting BUS demand. If the ratio is above 10 (that
is, each person on average takes more than 10 trips by rail each year), it
suggests a mature and convenient railway system that will substitute for
BUS demand. Ratios between 1 and 10 have generally no impact on
BUS demand. The coefficient Rit is a specific parameter calibrated to
the value of Rit . Once the adoption rate has been predicted it is possible
to calculate the fleet size of a given region in a given year as:

= ×FleSiz u Popexp( )ijt ijt ijt (15)

where Popijt is a measure of population corresponding to the measure of
uijt, which varies by vehicle type. More specifically, it is WAP for

=j LDV and the total population for j HDV BUS{ , }. The fleet size of
the OTH region is proportional to the sum of the fleet size of the major
modelled regions, assuming that the ratio between the OTH fleet size
and the combined size of other fleets, denoted OTHShaj is unchanged
over time such that:

= ×FleSiz FleSiz OTHShajt
OTH

i OTH

ijt j (16)

Once the projected fleet size has been calculated it is possible to si-
mulate the demand for new vehicles by type based on the expansion of
the fleet (FltSiz Fltijt ijt 1) and the need to replace retired vehicles
(RetFltijt) given by:

= +TypDem FltSiz FltSiz RetFltijt ijt ijt ijt1 (17)

The demand for replacement vehicles, RetFltijt , in the above equation is
estimated by:

= ×
=

RetFlt W t t k FleSiz FleSiz( , , ) ( )ijt
t

t

ij ij ij jt jt
1980

1

1
(18)

This means that the number of vehicles retired in year t is given by the
sum of all vehicles sold in the past (traced back to 1980) that fail in year

Fig. 3. Weibull distribution for failure probability approximation. Sources: This
figure illustrates Weibull functions used in Eq. (18) to approximate the failure
rates of three fleets (LDV, HDV, BUS) at different regions. Figure legends specify
region codes and two parameters k( , )ij ij that are defined in Eq. (18) and ca-
librated from LMCA data.
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t. For a particular vehicle sold in year <t t , the number of vehicles that
need to be replaced in year t is given by the product of the failure rate,
approximated by a Weibull distribution W t t k( , , )ij ij ij and the sales
of that vehicle, estimated by FleSiz FleSizjt jt 1 where historical data
is not available. The Weibull distribution [56] is a continuous prob-
ability function that has a wide range of applications in survival ana-
lysis and reliability analysis, where time-to-failure is an important
metric.

In this context, the Weibull distribution is used to estimate the
probability that a car fails and need replacing across a range of ages
(t t ). Fig. 3 presents a Weibull distribution for each vehicle type by
region using historical data on the average and skewness of vehicle
lifespans. The distribution is characterised by a shape parameter >k 0ij
and a scale parameter > 0ij . As can be seen in Fig. 3, all shape
parameters are greater than 1 implying, not surprisingly, that the
failure rate increases over time.10

Hence, the annual demand for each powertrain is calculated by the
product of the market share by powertrain (calculated in the Cost
module) and demand for each vehicle type given by:

= ×PowDem PowSha TypDemijkt ijkt ijt (19)

The macro module therefore gives predictions of the demand for
different vehicles which is crucial for estimating critical material de-
mand. In the third module the infrastructure needed to charge EV
batteries is taken into account and linked to the demand for raw ma-
terials.

2.4. Infrastructure (I) module

If there is to be a widespread adoption of EVs, it is crucial that the
complementary charging infrastructure is put in place. Such an infra-
structure build out will also add to an increase in demand for certain
raw materials.

The infrastructure module estimate the demand for EV charging
stations which is assumed to be made up of EV chargers and hydrogen
stations with the former predicted to be more important. First, the size
of the fleet for those powertrains that use chargers (PHEVs, BEVs,
PFCEVs) is estimated, denoted by ChaFltijk, which includes two com-
ponents: new sales (PowDemijkt); and existing vehicles given by:

= + ×

=
( )ChaFlt PowDem ChaFlt

k CHARGE PHEV BEV PFCEV

1

for { , , }

ijkt ijkt ijkt
RetFlt
FleSize1

ijt
ijt

(20)

Eq. (20) assumes that powertrain, k, has the same retirement rate as
vehicle type j (RetFlt FleSize/ijt ijt). Assuming that this is the case, the total
charging fleet size can be aggregated to the regional level by:

=ChaFlt ChaFltit

j k CHARGE

ijkt (21)

In terms of the type of charging pole, they are categorised in this paper
into slow chargers and fast chargers. The underlying charging infra-
structure assumptions are discussed in Section 3.4.3. The number of
implied chargers by region, either slow (SloChait) or fast (FasChait) is
given by:

= ×SloCha ChaFlt PriParit it it (22)

= ×FasCha ChaFlt FasRatit it it (23)

where PriParit is the percentage of EV owners that own a vehicle that
needs charging and who have a designated parking place and FasRatit is

the ratio of fast chargers per charge requiring EV. Both fast and slow
chargers increase the demand for copper which is estimated using dif-
ferent copper intensities for slow chargers (SloCopit) and fast chargers
(FasCopit) given by:

= × + ×ChaCop SloCha SloCop FasCha FasCopit it it it it (24)

In a similar way to how EV charger demand is modelled, it is also
possible to predict the number of hydrogen vehicles that require
charging stations such that:

= + ×

=
( )HydFlt PowDem HydFlt

k HYDRO FCEV PFCEV

1

for { , }
ijkt ijkt ijkt

RetFlt
FleSize1

ijt
ijt

(25)

The aggregate demand for hydrogen stations by region is given by Eq.
(26), where HydConijkt is the hydrogen consumption of powertrain k
given by:

= ×HydDem HydFlt HydConit

j k HYDRO

ijkt ijkt (26)

For given hydrogen demand, the number of hydrogen stations
(HydStait) required can then be calculated using the daily capacity of
each station (HydCapit) such that:

=
×
×

HydSta ceil
HydDem
HydCap

10
365it

it

it

6

(27)

The steel required for hydrogen stations in each region (HydSteit) is
given by:

=
×

×
HydSte

HydSta HydCap
HydEff 10it

it it

it
6 (28)

where HydEffit is the weight ratio of stored hydrogen to the total storage
facility.

Once the demand for charging stations, the powertrain mix, and the
overall fleet size, have been estimated it is also necessary to make a
number of assumptions regarding the technologies underpinning ve-
hicle and battery production.

2.5. Technology (T) module

The technology module estimates critical material demand, denoted
MetConijktm, for each of the seven powertrains using Eq. (29) where:

= × +

× ×

×

MetCon PowDem MetInt

PowDem MetInt MetBat

ceil 1

ijktm ijkt ijktm

ijkt ijktm ijktm

Lif
BatLif

ijkt

ijkt (29)

Recall that m is the subscript for metal. MetIntijktm is the intensity of
metal, m, in a specified vehicle and MetBatijktm is the share of this metal
used in the manufacture of EV batteries only. Lifijkt and BatLifijkt are the
average lifespans of the vehicle and battery, respectively. The first term
in Eq. (29) is the metal demand for virgin vehicles and the second term
is metal demand for replacement batteries if the initially installed

batteries fail before the end of the vehicle life. Note that ceil
Lif

BatLif
ijkt

ijkt
is

the number of batteries used throughout the full vehicle life and it is
necessary to subtract one for the battery that is initially included in a
new vehicle.11

The technology module therefore provides the demand and supply

10 The function can be written explicitly as

= × ×W t k( , , ) expij ij ij
kij

ij
t
ij

kij t
ij

kij1
for =t t t 0. This means

that whether the failure rate decreases, is constant or increases over time, de-
pends on whether < =k k0, 0ij ij or >k 0ij , respectively.

11 The ceiling operator ceil x( ) returns the smallest integer that is greater than
or equal to x. As a numerical example, if = 1.5

Lifijkt
BatLifijkt

, a vehicle of the specified
type requires two batteries during its life cycle and as one was initially installed
with the vehicle, the owner will need to purchase one more. If = 3

Lifijkt
BatLifijkt

, the
number of additional batteries required is estimated to be two.
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for eight different metals that are considered crucial for the EV market
(vehicles and batteries). Combined with the cost, marco and infra-
structure models, the framework enables an investigation into how
closely the expectations of a growing EV sector match the supply of
critical materials crucial to meeting this predicted demand.

3. Data and assumptions

To generate predictions from the CoMIT model described in Section
2 it is necessary to collect a wide range of data. For example, historical
data is used to calibrate parameters and to generate initial values for
the variables in the model. The calibration data are from 1980 although
the exact starting date varies depending on the variable. For data in-
itiation, data for 2015 and 2016 are used for almost every variable in
the Macro and Cost modules and the variables of interest are simulated
for the period 2017–2030. For some variables data for 2017 are used. In
addition, a number of assumptions on the future realisation of variables
that are assumed to be exogenous are made. This section describes the
sources of the data and the key contextual assumptions.

3.1. Macro variables

For measures of GDP, population, and industrial production, data
are provided by Oxford Economics.12 All monetary values are deflated
to 2010 prices. Supplementary Fig. 1 presents the assumed values for
these variables up until 2013. Supplementary Fig. 2 provides a score for
congestion and the number of rail passengers per capita, by region,
using the assessment procedure outlined in Section 2.3. Supplementary
Table 3 presents predictions of the future fuel price changes by region
between 2017 and 2030 based on prices (before tax) of future crude oil
price trends assuming that the tax rate in each region remains un-
changed over time.

Fuel prices are taken from the IEA, adjusted where necessary for
local taxes. For power prices, costs are broken down into their fuel and
non-fuel components. For the fuel component, a CRU internal coal price
forecast is used (built from the bottom up based on a long run marginal
supply cost) (CRU Thermal Coal Market Outlook and Cost Services)
combined with oil and gas price forecasts form the IEA, weighted ac-
cording to the share of power generation for each region (again ob-
tained from the IEA), and the estimated cost share (i.e. the proportion
of fuel used in total power production costs for each generation tech-
nology (using internal assumptions, derived from an extensive litera-
ture on levelized power costs). Hydrogen prices are indexed to regional
gas prices. The non-fuel share component is projected forward using the
cost share assumption and the projected national inflation rate (IMF,
Oxford Economics).

Electricity prices are based on the average household electricity
price in each region, which is assumed to change over time at the same
rate that US electricity prices change [57]. A uniform 20% mark-up is
applied to account for the assumption that car charging will become a
commercial service in the future. In terms of hydrogen fuel infra-
structure for automotive use, this element is still in its commercial in-
fancy, with production facilities and refuelling stations almost non-ex-
istent outside of a small number of networks in California, Japan, and
Northern Europe. Hence, the forecast for the hydrogen price is for it to
fall steadily throughout the period and assumed to approach gasoline’s
equivalent hydrogen price by 2025 [58]. As this gap closes, the em-
phasis that consumers will place on engine efficiency will increase.
Based on the analysis of the various channels that predict a decreasing
hydrogen price (feedstock, production, transport and retail), a global
compound annual growth rate (CAGR) of −5.1% is imposed for the
period 2017–2030. A sensitivity analysis in Section 4.4.2 investigates
how the results are influenced by the assumptions on economic growth

and other key variables.

3.2. Vehicle-related variables

3.2.1. Vehicle choice
The historical data on vehicles sales and vehicle ownership rates by

powertrain, and by region, are sourced from LMC Automative (LMCA).
For modelling purposes one vehicle is chosen to be representative of
each powertrain, for each region, based on current market share. The
price, cost, and technical aspects of the chosen vehicles are considered
to be representative. Supplementary Table 4 lists the make of vehicle
chosen for each type and region. For example, for light-duty BEVs the
Tesla 3 for North America is chosen, BAIC EU260 EVs for China,
Volkswagen for both Western Europe and Rest of Europe, LADA Ellada
for the Commonwealth of Independent States, the Nissan Leaf for Asia
developed and Southeast Asia, Mahindra eVerito D6 for India and the
BMW i3 for Brazil.

3.2.2. Vehicle prices
The price of individual vehicles are collected via primary and sec-

ondary research. For LDVs the manufacturer’s suggested retail prices
(MSRP) is used and sourced from various consumer aggregate websites
for each region. For HDVs information is gathered from individual re-
tailers and dealerships in the different regions.13 The price of BUSs was
collected from the winning bids of government’s tenders in regions
where there was sufficient government transparency, and from industry
journals when this was not possible.14

For ICEVs, the prices used in the model are based on historical
series. For EVs no such data exists. In addition, the dynamic nature of
the industry means that costs and prices are changing rapidly. Hence,
the the price of EVs is benchmarked against ICEVs based on a com-
parison of different cost structures. A cost structure that includes direct
costs (raw materials and manufacturing), indirect costs and net profit
(dealer selling fee, marketing, transportation, labour, administration
maintenance, depreciation and amortisation, R&D and warranty costs)
is considered. It is also assumed that direct costs can be split into two
components: the first that is specific to each powertrain;15 and the
second, that the residuals of direct cost, are assumed to be common
across powertrains. It is also assumed that the common direct costs,
indirect costs and net profit per vehicle made by the original equipment
manufacturers (OEM) are the same for all powertrains for an identical
scale of production.

Based on this cost structure, the key differences in the technical
construction of different forms of EVs, their current respective costs
shares, and specific learning rates for each technical construct are
identified. To take productivity gains into account the residual cost is
modelled such that parity with ICE vehicles is achieved at a specific
time in the future that is dependent on current investment in new en-
ergy vehicles and the setting up of a supply chain in each region. This
enables a forecast of a baseline scenario for vehicle prices to be made.
Of the factors mentioned above, battery packs and fuel cells play an
important role in the price forecasting for EVs as they account for
around 30–50% of vehicle cost. The prices of battery packs have de-
creased by 20% over 5 years up to 2016 as a result of a substantial

12 https://www.oxfordeconomics.com/.

13 Unlike LDVs, the more specialised HDV market has less transparent pricing,
most likely as a result of the more bespoke nature of customer orders, which in
turn means smaller, more variable production runs and a high degree of cus-
tomisation.

14 For the sake of uniformity, tenders for the largest orders of buses were
favoured assuming that prices quoted to journalists by manufacturers would be
based on the lowest cost per bus of a large production run.

15 That includes engine, transmission, fuel tank and tailpipes systems for
ICEVs; battery pack (including the battery management system), a and electric
transmission for BEVs; and fuel cell stack, electric transmission and hydrogen
cylinders for FCEVs.
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growth in scale, learning curves in manufacturing, improvement in
battery performance, and less volatile material prices. While a con-
tinuing reduction in battery prices is forecast, it is anticipated that there
will be lower decreasing rates, 3–4% per annum by 2020 and 2–3% per
annum by 2030, as the cost reduction is likely to slow down and
technological advancements tend to be more difficult and costly to
achieve. Accordingly, large-format battery pack prices are forecast to
fall to $120–140 per kWh by 2030.

3.2.3. Vehicle and battery lifespan
The TCO of any vehicle is dependent on assumptions regarding the

average lifespan of a vehicle. A typical lifespan can vary considerably
and depends on the type of vehicle, usage, regional differences (e.g.
weather), income levels, and legislation, among other factors. The
lifespan used in the model is based on the mode of the lifespan of ve-
hicles calculated from data provided by auto industry associations and
government agencies. The variable is assumed to be time-invariant,
except for LDVs in China, where vehicle lifespan is assumed to increase
from 8 to 9 years after 2020. In addition, batteries are assumed to have
a shorter lifespan than the vehicles where they are initially located,
meaning that each vehicle will require a battery replacement at least
once during its lifetime (see Supplementary Table 5 for details on the
assumed lifespan of both batteries and vehicles for each powertrain).
Vehicle usage varies across countries and is captured by a variable that
measures the annual miles travelled collated from the literature for
each vehicle type and illustrated in Supplementary Table 6.

3.2.4. Vehicle fuel efficiency
Measures of the current fuel efficiency of vehicles is obtained from

certification tests on the representative vehicles and OEM reported
figures. Credible user data from fleet operators and city transport au-
thorities collected by CRU have also been used to revise these efficiency
statistics so it is possible to reflect real driving conditions (given that
tests for certification and by OEMs are carried out under controlled
conditions).

The fuel efficiency of conventional cars is largely driven by policy
and legislation on carbon emissions. The Corporate Average Fuel
Economy (CAFE) standards prescribed in the USA form the basis of the
forecasts for fuel efficiency of petrol and diesel cars.16 Other regions
may also follow CAFE standards or introduce their own fuel efficiency
standards normalised to US CAFE by the International Council on Clean
Transportation. It is assumed that the current 30% markdown from
CAFE standards to real on-road standards will not change over the time
period used in this paper.

The efficiency for other regions is calculated using a similar meth-
odology and uses the CO2 emission standards in each country as a guide
for estimating fuel efficiency levels with efficiency adjusted to match
on-road recorded efficiencies.

The forecasts for the efficiency of hybrid powertrains uses current
mark-ups on the base conventional vehicle. For PHEVs, the efficiencies
for the two driving modes are assumed to be the same as that of the
corresponding pure powertrain, ICEVs and BEVs, respectively. The

overall efficiency is determined by the distance driven in each mode.
For LDV PHEVs, it is assumed that the vehicle is driven in electric mode
for 70% of the distance travelled with the remaining 30% petrol. For
bus PHEVs in China, it is assumed that 40% of the driving is in electric
mode. These distance shares are based on the typical driving distance
between consecutive charges and the electric range of the vehicle. A
similar approach was taken for PFCEVs with the share of distance as-
sumed to be 50% each for battery-electric and hydrogen modes in LDV
PFCEVs. The efficiency forecast for BEVs is based on an understanding
that the energy efficiency of this powertrain is currently higher than
that of conventional or hydrogen fuel modes. As such, the efficiency of
BEVs grows more slowly than that of its peers. FCEVs have a greater
scope for improvement in the energy efficiency of its powertrain and
therefore their efficiency levels grow faster than those of BEVs.
Supplementary Table 7 summarises the assumptions on the CAGR of
Average Fuel Efficiency between 2015 and 2030.

3.2.5. Vehicles maintenance
Part of the cost of vehicle ownership is the ongoing maintenance

costs. In the model, maintenance costs for LDVs in each region are
based on data compiled from the monthly or annual cost to owners
using data from independent studies and that published by OEMs
themselves. User reported figures are then used to validate the data. For
HDVs and BUSs, the maintenance cost is normally reported in USD/km.
Data was compiled from a large number of sources, including fleet
operators, industry publications, government and policy reports, and
academic papers. Once the maintenance cost per kilometre is estab-
lished and how this changes with distance and age, it was scaled by the
annual driving cost of the vehicle. Maintenance costs were found to be
considerably higher for HDVs than for LDVs, which was not unexpected
given the comparative sizes and uses of such vehicles. BUSs, however,
were found to incur even greater maintenance costs which, although in
part due the stringent standards implicit in the operation of a public
service vehicle, is mainly the result of the additional strain placed on
the brakes and engine from the frequent acceleration and deceleration
between stops. Supplementary Table 8 provides the details that un-
derpin the maintenance cost assumptions.

3.2.6. End-of-life values
A vehicle is assumed to retain some of its value at the end of its

useful life because it can be recycled. For the purposes of this model,
what is of interest is the cash value that is returned to the owner who is
scrapping or disposing of their vehicle. For ICE, weight and age are
likely to be the most important determinants of scrap value. Based on
the scrap values quoted by authorised scrap facilities using a typical life
cycle of 12 years and a 5% discount rate, it is found that the net present
value (NPV) of the residual value of a LDV is negligible and can be
assumed to be zero.17 For ICE-diesel and HEV buses, the end-of-life
value is set to be between 10–20% depending on the region. Also in-
cluded is a resale value since the first users in the bus industry tend to
sell their buses after around 10–12 years of service after which they
continue to be used. The different end-of-life values across regions and
time are illustrated in Supplementary Table 9.

For EVs, although there is the possibility of recycling the vehicle and
their batteries at their end of life (EOL), these developments are at a
nascent stage and hence are not included in the base case. In addition, it
is unlikely that the spread in the costs of recycling and value of the
salvaged material from BEVs will increase to a level where it will result
in realisations any greater than from ICE. For BEV buses, the EOL value
has been set to zero and hence it is forecast that one possible battery

16 The CAFE standards refer to the efficiency required by the vehicle fleets
produced by manufactures for each model and are set by vehicle size. The
current standards are applicable until 2025 where fleet-wide efficiency for
passenger cars is assumed to increase at a rate of 4.3% CAGR from 2016 – 2025
reaching a target level of 56.2 mpg. It can be argued that neither the rate of
growth, nor the final efficiency targets are representative of what fleet effi-
ciencies are likely to be in the future because: (1) CAFE standards based on lab
tests are significantly higher than the actual EPA window stickers of cars by a
factor of around 30%; (2) manufactures will also be able to buy tradable credits
from companies such as Tesla that only produce EVs and therefore future
standards will not necessarily need to be achieved; (3) manufacturer fleets will
increasingly consist of larger numbers of HEV, PHEV and BEVs which will re-
duce fleet averages.

17 For example, a Volkswagen model Golf (petrol) with a current MSRP of
£19,115 and a scrap value of £117.56 will have a NPV of just £65.46. The
values for a Renault (Clio petrol) and a Ford (Fiesta diesel) are £45.02 and
£65.46, respectively.
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replacement will be needed during the lifetime of a bus. However, the
cost of this replacement is calculated to be equal to the value of the
resale realisation for the first user. Therefore, the EOL value to the user
is set to zero for all EVs. As FCEV scrappage and salvage values have
been given little consideration, any appreciable realisation for the user
of an FCEV at the end of the vehicle’s life is not considered. In future
work, it is hoped that it will be possible to include a recycling (R)
module so that it will then be possible to estimate how recycling im-
pacts the results that are currently found for critical metal demand.
Although it will reduce demand it would be useful to know by how
much as this would then enable investors to gauge the potential profit
from setting up a recycling plant in a given location.

3.3. Policy related variables

The price of a vehicle and operating costs can also be affected by
government legislation especially with regard to the imposition of taxes
on fuel and the granting of subsidies to reduce the purchase price of an
EV for individual consumers.

3.3.1. Subsidies
Many countries offer subsidies for the purchase of EVs, in part, to

enable a country to meet policy objectives, that includes the desire to
expand the market share of EVs. The projections are based on the as-
sumption that subsidies currently available in the leading countries of
each region will eventually taper off as EVs become price competitive
with more traditional powertrains. Two different methods have been
used to forecast subsidy values: in regions where the government has
fixed a deadline for subsidies to end, such as China, these deadlines
have been kept; elsewhere, and in the absence of an objectively quan-
tifiable way to predict at what point subsidies would run out, they have
been stopped when the subsidised powertrain’s capital cost reaches
parity with its petrol equivalent. In all regions except China, blanket
subsidies for trucks and buses are not commonplace, with governments
preferring to award grants to individual operators on a case-by-case
basis. Because of the variable and ad-hoc nature of these grants they are
not included as subsidies in the analysis.

3.3.2. Regulatory standards and compliance costs
It is common for governments to mandate vehicle producers to meet

certain performance standards on tailpipe emissions and to meet fuel
efficiency standards. When manufacturers implement government
policy it tends to mean an increase in costs associated with the devel-
opment and implementation of new technologies. Details on existing
and future standards are shown in Supplementary Fig. 3 which shows
that, with the exception of the US and Japan, the majority of the regions
in the model are using some form of European standards. China and
India, for example, are using historical (less stringent) European stan-
dards. These regulations are expected to become more stringent over
time with the associated implications for vehicle costs. Compliance
costs for standards that are currently in place or have been announced
for enforcement in regions are modelled based on the relative increase
in stringency of new regulations over older regulations (Supplementary
Table 10).

3.3.3. Taxes and charges
In addition to subsidies, also included is a range of taxes and charges

such as VAT/sales tax, excise duties, and registration fees. It should be
noted that tax rates differ significantly across regions. However, the
interest of this paper is limited to variation in tax rates across power-
trains within a region and how this impacts the relative price of dif-
ferent powertrains. For example, India levies a 12% tax on BEVs but a
28% tax on diesel and petrol cars. In addition, annual charges for
owning a vehicle such as road tax or annual circulation tax (ACT) are
also included. Details on the different taxes and charges can be found in
Supplementary Table 11.

3.4. Metal content variables

In order to estimate the ‘Technology’ module in the CoMIT frame-
work it is necessary to make a number of assumptions on the metal
content in vehicles. Two separate components are modelled: the metal
in batteries; and the metal in other parts of the vehicles.

3.4.1. The metal requirement for vehicle batteries
The first stage is to match key battery types to powertrains and then

model the metal demand associated with each of these batteries. Three
main battery types are considered: Lead-acid; Nickel Metal Hydride
(NiMH); and Lithium-ion batteries (LIBs). Lead-acid remains the most
commonly used in (starting-lighting-ignition) batteries in ICEVs in the
form of a 12 V lead acid cell. NiMH is the principle technology in HEVs
and PHEVs, where it’s small size and higher energy density compared
with non-LIB cell chemistries gives it a distinct niche. LIBs are the most
popular form of BEVs battery thanks to its high life-cycle and high
energy density. Depending on the cathode chemistries, LIBs can be di-
vided into four categorises listed in order of increasing energy density:
Lithium Iron Phosphate (LFP); Lithium Manganese Oxide (LMO);
Lithium Nickel Manganese Cobalt Oxide (NMC); and Lithium Nickel
Cobalt Aluminium Oxide (NCA) (see Andwari, Pesiridis, Rajoo,
Martinez-Botas and Esfahanian [59] for more details).

A vehicle’s battery metal intensity (Ni, Co, Li, Mn, Al, steel) is
modelled by summing: (1) The nickel, cobalt and manganese content in
the active cathode material; (2) The lithium content in the active
cathode material, electrolyte and anode material (for LFP/LTO type
batteries); (3) The aluminium content in the active cathode material
(for NCA), and in current collector (for all battery types); and (4) The
copper content in current collector (for all battery types); (5) The steel
content in the battery casing. For these calculations, the BatPAC model,
developed by Argonne National Laboratory [60], is used in addition to a
range of other academic sources on material intensity and information
on developments in battery densities from primary research.
Supplementary Table 12 provides the details, including the assumptions
on the future metal intensity of batteries. The average size of the battery
packs by vehicle type and powertrain is estimated for each region using
the representative vehicles referred to in Section 3.2.1. The product of
metal intensity and battery size enables the current metal content of
batteries to be estimated.

To forecast cathode material volumes, the following assumptions
are made based on work by a number of specialist research companies,
in particular Avicenne research and CRU:

• Older chemistry’s, such as LMO and NMC 1:1:1 are gradually being
phased out from vehicle manufacturing;

• LFP chemistry, currently in use in EVs in China and, to some extent,
in India, is expected to be phased out in light vehicles, but will
continue to be used in buses;

• NCA, developed by Panasonic and used in Tesla BEVs and in Toyota
Prius PHEVs, is expected to prevail in vehicles sold in US and to take
a substantial share in vehicles sold in Europe. However, other EV
producers are not expected to adopt this technology, leading to a
gradual decline in its market share over time.

• Within the NMC chemistry, the trend towards eliminating cobalt
and increasing the nickel content is expected to continue and result
in gradual change in vehicle producer’s choices, moving away from
NMC 1:1:1: to NMC 5:3:2, then to NMC 6:2:2 and to NMC 8:1:1.

• This trend is expected to be slow and gradual (with China the most
rapid adopter). The uptake of NMC 8:1:1 chemistry, which is cur-
rently in development and trial production and is not yet widely
used in EVs, is expected in the mid 2020s, assuming all outstanding
issues with its technology (stability, overheating, cycling behaviour)
are resolved.
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3.4.2. The metal requirement for vehicles excluding the battery
To estimate the steel and aluminium content of each vehicle, a

number of assumptions are made and are listed in Supplementary
Table 13. Light-weighting is taken into account, motivated by increas-
ingly stringent emissions legislation, and is seen as a key driver when
forecasting a gradual reduction in a vehicle’s steel content and an in-
crease in the aluminium content. The only exception is India, where the
size, weight and steel content of cars is expected to rise as manu-
facturers increasingly attempt to emulate the construction methods and
style of Western cars. Aluminium substitution is also still occurring but
tends to be offset by an increase in the steel content. For ICE light ve-
hicles and heavy vehicles, there is an assumed annual average increase
in aluminium content of approximately 2%. For buses, an average an-
nual increase of 1% is assumed for North America, Europe and other
developed regions and 3% for China and the rest of Asia. In the light
vehicle segment, most BEV models currently in production are more
aluminium intensive than the comparable ICEVs due to a more urgent
desire for a lower weight to achieve a better range.18 Some manu-
facturers, however, have recently begun to revert back to the use of
steel. As a result, the powertrain weight reduction seen in some second-
generation mass-market EVs have been nullified by the weight increase
in the body and other parts [61].19 Considering the net effect of these
mixed trends, an increasing aluminium intensity of BEVs, HEVs and
PHEVs, but at a slower pace compared to ICE powertrains, is assumed.

The nickel, manganese, and chrome content in vehicle parts other
than the battery, are derived from the assumed stainless-steel content.
In fact, stainless steel is widely used in car exhaust systems and for parts
such as hose clamps and seat-belt springs. For light vehicles, it is as-
sumed that the stainless steel content is approximately 1%-2%, de-
pending on the region, which is equivalent to 15–20 kg. It is assumed
that virtually all of this steel is 304s grade with 18%, 9% and 2% of
Chrome, Nickel and Manganese content, respectively. For HDVs and
BUS the estimates are scaled up, assuming around 30 kg of stainless
steel to be used in heavy vehicles and around 40 kg in buses. An average
annual increase in stainless steel intensity of 2% is forecast for all ve-
hicle types, assuming an increasing application of stainless steel in the
chassis, suspension, body, fuel tank and catalytic converters.

EVs are known to be more copper intensive compared to conven-
tional ICEVs. Approximately 40–80 kg of copper per vehicle is required
in the windings of the electric motors and additional cabling to move
power from the battery to the motors. The key driver behind the in-
creasing copper content in EVs is increasing the average battery size in
light vehicles and buses. Supplementary Table 13 presents and the as-
sumptions underpinning the copper content estimates.

3.4.3. EV infrastructure capacity variables
Charging poles are a critical part of the infrastructure needed for a

region to have a successful EV sector [62]. In the model, chargers are
categorised as fast or slow. Slow chargers use alternating current and
usually have a power capacity below 3.7 kW and take 6–12 h to fully
charge a typical BEV. Although mostly home chargers, some are pub-
licly owned with restricted accessibility (e.g. in shared apartment
blocks, shared parks, company carparks, hotels, shopping centres, etc.).
Whilst these semi-public chargers tend to have higher power capacity,
they are not fundamentally different from home chargers and are
therefore categorised as slow chargers. It is estimated that a slow
charger uses, on average, 1 kg of copper.

Fast chargers, on the other hand, are all publicly owned and use
direct current rather than alternating current, which gives them a
higher power capacity (22–200 kW) and a much faster charging speed
(15–45 min). However, as the grid uses alternating current, transfor-
mers are needed for fast chargers. It is estimated that four fast chargers,
when activated at the same time, consume 1 MW of electricity. The field
research used in this paper for China reveals that fast charging stations
typically allocate one 1250 kVA transformer for every four fast char-
gers. It is therefore estimated that a fast charger uses 32 kg of copper on
average, including copper used in the transformers.

As people tend to only buy a charge-needed EV when they have
access to a charger, it is assumed that there is a 1–1 relationship be-
tween charging poles and the fleet of charge-needed EVs. Most charging
poles will be slow chargers while fast chargers will be scarcer as their
reduced charging times means a smaller number is needed to cater to a
larger fleet. In addition, fast charging is more expensive as it tends to be
provided as a service and so will only be used when necessary.
However, in densely populated areas with limited private parking in for
example, China, or Japan, it is expected that there will be a greater
penetration of fast chargers, necessitated by the lower roll out of home
or semi-publicly owned slow chargers.

For hydrogen stations, the average station fuelling capacity st cal-
culated from current data. Then, based on the fact that petrol stations
are on average, refuelled once per day, it is assumed the same holds for
hydrogen stations, and therefore estimate the storage capacity of a
hydrogen station to be 1/2 of the station fuelling capacity. Using the
principle of cost minimisation, it is assumed that hydrogen stations will
compress hydrogen and store it in steel tank racks at 200 Bar (some may
use liquid hydrogen). A compressor and a heat exchanger (cooler) are
needed to raise the pressure to the level of the tank in a FCEV (350 –
700 bar). The gravimetric density of a typical system described above is
roughly 2%, meaning that a 100 kg storage system could store ap-
proximately 2 kg of hydrogen.

4. Results and discussion

4.1. Fleet size and annual sales

Fig. 4 illustrates the global projections that are used in the paper for
the stock of vehicles that will be in existence in 2030 compared with
2015 and the spatial distribution. As the world is expected to become
more prosperous and populous, the sizes of all three fleets including
LDV, HDV and BUS, are projected to increase by approximately a half
over 15 years, reaching 1,612.9, 331.9 and 11.5 million, respectively.
However, it is expected that there will be a substantial change in re-
gional shares with a remarkable rise in Asian countries. NAM and WEU
are still projected to be important markets, even though their fleet sizes
are predicted to decrease. CHN is expected to double its share of LDVs
and becomes the largest market, while maintaining its leading position
in terms of both HDV and BUS ownership. IND is also expected to
double its share of the global LDV fleet, from 3% in 2015 to 6% in 2030.

Assuming that vehicle demand is supplied by OEMs, it is forecast
that vehicle sales will increase from 95.3 million in 2015 to 121.4
million in 2030. The ‘Cost’ module enables a detailed decomposition by
powertrains to be provided. This decomposition is demonstrated in
Fig. 5. ICEVs using petrol are expected to decrease from 72.31 to 61.36
million but are still predicted to dominate the market. In contrast,
ICEVs using diesel are predicted to increase from 20.81 to 22.44 mil-
lion, mainly because of rising demand for HDVs, while demand for
these powertrains slightly decreases in the LDV and BUS categories. In
terms of EVs, HEVs increase dramatically from 1.46 million to a level
comparable to ICE DIESEL. Likewise, PHEV demand increases tenfold to
2.51 million and BEVs demand increases by 28 times to 2.51 million.
Despite remarkable growth, vehicles using fuel cells remain a relatively
modest segment when compared to other powertrains.

Fig. 6 presents an assessment of the predicted electrification rates in

18 The bodies and chaises of the Tesla model S are built almost entirely from
aluminium with an estimated aluminium content of 190 kg. The Chevrolet Bolt
contains approximately 150 kg of aluminium while the Tesla Model 3 has
aluminium body and the BMW i3 has an aluminium frame.

19 Nissan, for example, have manufactured the second-generation Nissan Leaf
model with steel doors, having originally used aluminium in the first genera-
tion.
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2030 by region. Regions are sorted by the increasing share of EVs in
annual sales of all vehicles. The global average is 13%. China and North
America are projected to be the only two regions that surpass the global
average, at 21% and 17%, respectively. These electrification rates re-
main some distance away from the ambitious targets advocated by
EV30@30 campaign, which has the goal of a 30% of market share for
EVs in 2030 [63]. In general, the electrification rate of BUS sales is
expected to be much higher than that of LDVs and peak at 75% in CHN.
It should be noted that HDVs are excluded for Fig. 6 as the share of EVs
in their sales in 2030 is still negligible and remains constrained by a
lack of feasible and economical battery technology for long-distance

and heavy-load travel.
Table 1 and Fig. 7 present the results of the Technology module and

show how metal demand responds to changes in annual vehicle sales.
To meet the demand for metal to match the predicted vehicle sales in
2030, the projection is that 106.7 million tonnes (mt) steel, 17.4 mt
aluminium, and 3.3 mt copper will be required. Over 15 years, while
vehicles sales are predicted to increase by 27.4%, demand for steel is
predicted to fall by 9% and demand for aluminium and chrome to in-
crease by 41% and 34%, respectively, consistent with the material
substitution and reduced demand because of lightweighting. Demand
for the metals used intensively in EVs tends to grow faster but at

Fig. 4. Global fleet size (million): 2015 (historical) vs 2030 (projected). Sources: Authors calculated from LMCA data for 2015 and projected for 2030 by the CoMIT
model.

Fig. 5. Sales by powertrains (million). Sources: Authors calculated from LMCA data for 2015 and projected for 2030 by the CoMIT model.
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different speeds. Demand for copper increases by more than 50% and
demand for manganese and nickel increases fivefold. More importantly,
demand for lithium is projected to dramatically increase by up to 18
times and demand for cobalt grows from 5 to 185 thousand tonnes (kt)
(or a 37-fold increase). Reassuringly, estimates of demand of 147 kt for
lithium and 185 kt for cobalt, derived from vehicle sales in 2030, lie
between the two estimates from [7], namely the New Policies Scenario
and the EV30@30 Scenario.20 This provides a strong degree of con-
fidence in the modelling framework presented in this paper, with the
former model projecting an annual demand for 91 kt lithium and 101 kt
for cobalt while the latter projects a demand of 263 kt of lithium and
291 kt of cobalt.

4.2. Metal demand for vehicles and infrastructure

To understand the implications of this dramatic increase in metal
demand for vehicles, the estimates are compared with projections from
global production in 2017 and global reserves, as shown in the lower
panels of Table 1 using the latest publicly available data [64]. Changes
in the vehicle market are likely to completely change the lithium and
cobalt markets. Vehicle sales in 2030 are projected to create a demand
equivalent to 3.4 times the amount of lithium and 1.7 times the amount
of cobalt that was produced in 2017 for all purposes.

What might this all mean for long term critical raw material avail-
ability? If it is supposed, for example, that demand remains unchanged,
global reserves would be sufficient to supply the vehicle market for
about 109 years for lithium and 38 years for cobalt. However, in reality,
these resources will come under pressure much earlier given that de-
mand is projected to grow exponentially (Fig. 7). The model forecasts
that supplies of cobalt and lithium will be exhausted by the middle and
end of the century, respectively, because of mobility demand alone
even if there are no significant technological advances in extraction and

recycling of these resources (and in the absence of additional resource
discoveries). E-mobility could be also an important driver for nickel,
aluminium and copper market as by 2030 as demand for these metals
are projected to increased by 30.4%, 8.4% and 6.3% of the annual
production (in 2017).

The concentration of demand and auto-chain production growth in
resource importing countries also has a major bearing on raw material
trade flows and concomitant supply chain risks. For example, China,
although a major producer of minerals such as Copper and Lithium, is
already the world’s largest importer of most primary raw materials
required to support the EV revolution. For example, the modelling
suggests that China’s share of global lithium and cobalt demand for
transport (increasingly the dominant end user) is likely to rise to about
68% in 2030. The implied supply risks are particularly starkly observed
in the case of cobalt where around two-thirds of the supply is currently
realised in the Democratic Republic of the Congo (DRC). Importantly,
however, risks differ at each stage of the production chain, with market
power in battery chemicals and cell manufacturing heavily con-
solidated in China, South Korea and Japan (which account for around
85 percent of current cell production is in these countries according to
CRU).

The Infrastructure module also predicts that a rapid growth in
charging infrastructure will be required to support a successful mass
market roll out of EVs. Fig. 8 shows that vehicle sales in 2030 translates
into a demand for 78.5 million slow chargers, 167 million fast chargers
and 6.4 thousand hydrogen stations. This level of infrastructure build-
out implies a further annual demand of nearly 128.4 kt copper. While
this represents a relatively small additional resource burden for copper,
such demand changes cannot be completely discounted: with the pro-
spect of both exponential vehicle sales growth, and increasingly con-
sumer demand for fast charging facilities (which are much more copper
rich than traditional slow chargers), this issue may nonetheless still
need to be taken into account when forming longer term materials
demand projections.

4.3. The roles of supply and end-of-life treatments

It should be acknowledged that this study is demand-centric in

Fig. 6. EV share as % of 2030 sales. Sources: Authors calculated from LMCA data for 2015 and projected for 2030 by the CoMIT model.

20 The New Policies Scenario is a central scenario that captures existing po-
licies and measures and those announced by governments around the world
that may affect the deployment of EVs. The EV30@30 has a more ambitious
scenario, in line with the Paris Agreement, and assumes a world of 30% market
share for EVs in 2030 as campaigned for by [63].
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Table 1
Metal demand for vehicles (kt).

Region AL CO CR CU FE LI MN NI

Year = 2015 (estimated)

BRZ 238 0 2 42 1,704 0 1 3
CHN 3,656 2 86 650 37,002 6 21 48
CIS 257 0 7 38 2,003 0 1 3
IND 382 0 6 78 4,535 0 1 2
NAD 941 0 29 161 9,762 0 3 15
NAM 2,928 1 77 434 24,048 1 11 41
OTH 1,063 0 28 184 10,737 0 3 13
REU 297 0 9 49 3,628 0 1 4
SEA 360 0 12 64 5,281 0 1 6
WEU 2,223 1 61 349 18,064 1 8 34
WTO 12,345 5 317 2,049 116,765 8 52 171

Year = 2030 (projected)

BRZ 474 0 8 64 1,934 0 1 6
CHN 5,142 125 108 1426 39,085 101 172 452
CIS 597 0 17 70 3,205 0 2 8
IND 1,303 7 32 269 12,796 6 12 36
NAD 1,228 5 37 196 7,687 4 9 38
NAM 3,193 23 75 489 13,810 17 31 110
OTH 1,287 0 34 161 6,636 0 4 16
REU 533 3 14 78 2,971 2 5 17
SEA 828 0 26 110 6,262 0 3 14
WEU 2,799 22 72 428 12,343 17 32 109
WTO 17,385 185 423 3289 106,731 147 271 808

Reference data [64]

Production (2017) 60,000 110 31,000 19,700 1,700,000 43 16,000 2100
Reserve – 7100 510,000 790,000 – 16,000 680,000 74,000

WTO demand/WTO production (2017)

2015 20.6% 4.5% 1.0% 10.4% 6.9% 18.6% 0.3% 8.1%
2030 29.0% 168.2% 1.4% 16.7% 6.3% 341.9% 1.7% 38.5%

WTO reserve/WTO demand (years)

2015 – 1,420 1,609 386 – 2,000 13,077 433
2030 – 38 1,206 240 – 109 2,509 92

Note: See Supplement Table 1 and Section 2.1 for details of notations.

Fig. 7. The growth of metal demand for vehicles. Sources: Authors’ calculation. Figures in brackets next to legend indicate projected growth indices of metal demands
in 2030 in comparison with base year 2015 (set at 100).
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nature, and therefore is not able to fully take into account the inter-
action with the supply side of mined commodities. It is assumed instead
that the market will be driven by a shift in customer preferences toward
low-carbon vehicles as guided by relevant green policies and incentives,
and supported by technical advancement in transportation, and as such
will possibly put additional pressure on metal supply. The simplifica-
tion in the approach used in this paper is, however, necessary to un-
derstand the key drivers behind the demand side so that different
players in the market need to perceive and plan to act accordingly.

In the unlikely event that supply responses are weakly observed, the

demand pressure outlined above, would principally translate into either
an increase in the price of metals or spiralling risks of supply inter-
ruption as producers face steeper marginal cost curves in an attempt to
exploit deposits of deteriorating quality. The situation could be further
complicated by other non-market factors such as geopolitical risks as
well as environmental, social and governance concerns related to
mining. As a result, the adoption of EVs would likely be affected as
battery prices are no longer able to fall fast enough to compete with the
price of ICEVs.

However, more plausibly, there are several ways in which markets

Fig. 8. Implied infrastructure demand for EVs. Sources: Authors’ calculation.

Table 2
Robustness check: The role of discount rate.

PANEL A: SALE SHARE BY POWERTRAINS

Year Discount rate ICE PETROL ICE DIESEL PHEV HEV BEV FCEV PFCEV EV rate

2020 3% 72.73% 20.88% 1.31% 2.24% 2.82% 0.01% 0.00% 4.14%
5% 72.86% 20.91% 1.30% 2.13% 2.79% 0.01% 0.00% 4.10%
10% 73.11% 20.97% 1.28% 1.91% 2.72% 0.01% 0.00% 4.01%

2025 3% 69.49% 19.66% 2.10% 2.82% 5.83% 0.10% 0.01% 8.04%
5% 69.64% 19.69% 2.10% 2.69% 5.77% 0.09% 0.01% 7.97%
10% 69.93% 19.74% 2.09% 2.45% 5.69% 0.09% 0.01% 7.88%

2030 3% 50.39% 18.47% 2.06% 17.78% 10.52% 0.70% 0.07% 13.35%
5% 50.54% 18.48% 2.07% 17.65% 10.55% 0.64% 0.07% 13.33%
10% 50.72% 18.41% 2.07% 17.40% 10.79% 0.55% 0.06% 13.47%

PANEL B: METAL DEMAND (kt)
Year Discount rate AL CO CR CU FE LI MN NI

2020 3% 15,238 42 380 2,539 121,086 38 118 304
5% 15,256 41 381 2,539 121,177 38 118 303
10% 15,291 40 382 2,539 121,358 37 117 300

2025 3% 17,715 98 434 2,985 120,896 78 173 502
5% 17,734 97 434 2,984 120,994 78 173 501
10% 17,771 96 436 2,984 121,165 77 172 498

2030 3% 17,369 184 423 3,282 106,652 146 269 803
5% 17,385 185 423 3,289 106,731 147 271 808
10% 17,429 193 424 3,326 106,994 153 279 832

Note: The baseline results use a discount rate of 5%.
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could respond. First, as shown in the previous analysis, commodity
demand growth from the electrification of transport could attract more
investment into the mining sector that will expand the supply curve
(including through new exploration). It is also expected that the supply
curve will be shifted (at an unknown rate) by technological break-
throughs as a result of active R&D expenditure at different stages of the
supply chain. For example, new cobalt supplies maybe accessed
through investment in new precipitation techniques as part of nickel
processing), while improved treatment methods for end of life LIBs
could be particularly important.

To this end, three routes are considered in the literature. First,
batteries that are still in good condition when an EV fails for other
reasons could be reused for cars of the same brand [65], especially after
replacing damaged cells [66]. This would reduce demand for battery
replacement (which in turn lowers demand for metals such as lithium,
cobalt, nickel, manganese). However, at the current time, this form of
reuse is minimal, due in part to the lack of a functioning market for
used batteries [67]. Second, there is the possibility that spent auto-
motive batteries could be re-purposed for stationary applications, such
as peak shaving for storage of intermittent renewable energy sources
[68]. Martinez-Laserna, Gandiaga, Sarasketa-Zabala, Badeda, Stroe,
Swierczynski and Goikoetxea [69] discuss a number of recent com-
mercial OEM projects that attempt to prove that a stationary second life
is technical feasible. However, this is unlikely to have a major impact
on metal demand over the forecast horizon, in part due to lags in
availability of batteries to be re-purposed. Third, spent batteries could
be recycled. However, the current generation of LIBs are not designed
for recycling, but rather for enhanced operation (low cost, fast charging
and long lasting) [70]. Unlike lead acid batteries, recycling of LIB is not
profitable enough at large scale [71] or in the absence of very high
values for recovered materials [72]. While profitability could be im-
proved over time as a result of economies of scale facilitated by a rising
stock of retired LIBs, the trend towards lower cobalt content in LIBs
could undermine the economic rationale behind any push for greater
recycling. In addition, given the dangers associated with shipping LIBs,

there is still no accepted method for the collection of spent batteries to
feed into any recycling process [71]. To this end, current and future
regulation will play a critical role in preventing LIBs being taken to land
fill and should be designed in such a way that is supports any fledgling
recycling industry. All of these factors make recycling and end-of-life
assumptions challenging to incorporate into a model of this type but
this should be part of any future research to extend the current model.

4.4. Sensitivity analysis

4.4.1. Discount rate uncertainty
One concern with any analysis based on the TCO method is the

uncertainty surrounding the choice of discount rate. A higher discount
rate heavy weights costs that occur in the present and therefore make
consumers prefer powertrains that are cheaper now instead of to those
with the potential to save costs later. Table 2 compares the baseline
results, which use a discount rate at 5%, with discount rates at 3% and
10%. The general finding is that a change in the discount rate only
slightly changes the powertrain mix and metal demand. Overall, a
higher discount rate slows down the electrification of global fleets
(Panel A). The impact of discount uncertainty could be time-varying.
For example, BEV sales and demand for associated metals like lithium,
cobalt, nickel and manganese before 2025 decrease when the discount
rate increases but enjoy a higher discount rate later.

4.4.2. Economic growth uncertainty
Economic growth is the main source of the increase in vehicle sales

and hence a considerable driver of the metal demand. To analyse the
sensitivity of the results to different growth predictions, Fig. 9 shows
how the baseline (orange lines) compare to two other scenarios, where
worldwide GDP growth since 2018 increases and decreases by a half
(green and blue lines). Compared to the baseline sales of 121.4 million
vehicles in 2030, the sales are 105.5 (-13.1%) and 135.1 million
(+11.3%), respectively, when the growth is adjusted by a factor of 0.5
and 1.5. Metals for batteries such as cobalt, lithium, manganese, and

Fig. 9. Robustness check: GDP growth factor (GF) and annual demand for vehicles and metals. Note: Growth factor(GF) = 1 (orange) is the baseline result. Sources:
Authors’ calculation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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nickel are less sensitive than others (aluminum, iron, copper and
chrome) probably due to the more important role of technical progress.
Notably, when economic growth is adjusted by a factor of 1.5, steel
demand now exhibits an upward trend.

4.4.3. Electrification of LDVs in China
The baseline results model the power mix of LDVs in China sepa-

rately, taking into account the deployment of the dual credit system
(see Supplementary 2). To illustrate the potential impact of this policy,
which is expected to regulate the market by a less direct intervention
than the current subsidy, a counter factual analysis is run that compares
the baseline results and the case where the subsidy ends in 2020
without replacement (the dual credit-quota system). As China is pro-
jected to be the largest market for all types of vehicle in 2030, this
modification has significant implications for the results as illustrated in
Fig. 10. Under such a scenario, the electrification rate of the global
market falls from 13.3% to 9.7%. By 2030, projections of demand for
aluminium, chrome and steel increase but those for chrome, lithium,
manganese and nickel decrease substantially. The change in the pro-
jection for copper is negligible. This analysis emphasises the importance
of correctly modelling EV deployment in China if accurate predictions
of metal demand are to be made in the future. This should be an area of
future research.

4.4.4. The role of technical progress
Finally, technical progress in the framework presented in this paper

is modelled by a change in metal intensities overtime. The implication
of the assumptions used in this paper is depicted in Fig. 11 and com-
pares the baseline results (orange lines) and a no-progress scenario
where metal intensity of vehicles is assumed to be unchanged. Under
such a scenario, metal demand in 2030 is lowered to 13 mt aluminum,
130kt cobalt, 306 kt chrome, 3 mt Copper, 138 kt lithium, and 467 kt
nickel. Meanwhile, demand for steel and manganese increases to 128
mt, and 352 mt, respectively.

5. Conclusions

The electrification of the transportation sector is emerging as a key
priority in the fight against climate change, driven by the demand for
improved air quality and less carbon intensive economic development.
The innovative CoMIT (Cost-Macro-Infrastructure-Technology) frame-
work presented in this paper provides predictions on the potential scale
and depth of this structural transformation and the implications for raw
materials markets. By evaluating the role of key economic, technolo-
gical, policy and societal drivers underpinning the EV revolution, it
provides a critical framework for evaluating these key market dynamics
and can be updated as new data becomes available and policies and
technologies change.

The research in this paper highlights the interdependency between
electrified mobility, and the mining, metals and materials industries.
This is due to markedly different, and oftentimes more intensive, use of
raw materials in the production of these technologies. For example,
copper is used more heavily as a conductive material in motors, har-
nesses, and batteries; the demand for lighter weight vehicles will also
significantly spur substitution from steel to aluminium in chassis and
body sheets; while the batteries most prevalent in EVs are commonly
rich in metals such as lithium, cobalt, nickel and manganese.

These changing patterns of demand are found to differ markedly
across (and within) mineral value chains. In the case of currently small-
scale markets (just one or two thousand tonnes a year globally) such as
lithium and cobalt, for example, the implications will be transforma-
tive. This reflects the current importance of lithium ion batteries to
overall market demand and the anticipated ramp up in their produc-
tion. For other, larger materials markets, the impact will also be highly
significant. With reference to recent market outlooks [73,74], the re-
sults mean that the road transport sector is projected to account for
around a quarter and one sixth of total demand growth in aluminium
and copper, respectively, and to be the key driver of industry invest-
ment requirements in these metals over the next five years.

However, to understand the implications of these impacts, it is

Fig. 10. Robustness check: Electrification progress in China and metal demand worldwide. Note: Progressive (orange) is the baseline results. Sources: Authors’
calculation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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important to consider them within the wider context of the market,
technical, financial and policy conditions facing the resource industries.
The extent of any associated supply issues or risks depend on a wide
range of factors, including, but not limited to, the extent of geological
scarcity, the degree of uncertainty surrounding future supply and de-
mand, the extent of supply concentration in politically risky jurisdic-
tions, the availability and cost of accessing secondary supply sources,
and the capacity of downstream consumers to effectively respond to

price signals by substituting away from, or thrifting the use of, a given
set of raw material inputs.

For example, while lithium and cobalt are both likely to be subject
to remarkable demand growth trajectories, it is argued that the asso-
ciated supply risks are markedly different. Lithium is geologically dif-
fuse and abundant, with massive productive potential across both hard
rock and particularly brine based deposits. As such, it arguably presents
few long term supply risks. Cobalt, by contrast, is a rather scarcer by-

Fig. 11. Robustness check: Technological progress and metal demand. Note: Progressive (orange) is the baseline results. The blue lines depict a scenario where metal
intensity of vehicles is assumed constant. Sources: Authors’ calculation. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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product of nickel and copper which makes supply and prices more
volatile (since investment is largely determined by considerations in
other unrelated markets), is much less technically substitutable (both in
battery cathodes but critically across a range of other advanced man-
ufacturing applications, such as super alloys), and is heavily con-
centrated (around 70 percent) in the DRC (and therefore subject to
significant policy and market risks).

In the case of nickel and copper, for example, apparently lower
demand sensitivities may nonetheless disguise significant supply and
cost risks. Copper production is highly concentrated (around 50 percent
of global supply comes from roughly 20 mine sites), and is subject to
rising long term production costs, due to declining ore grades and in-
creasing mine depths: Codelco, the world’s largest copper miner, for
example, reported annual declines in ore grades of 7 percent in 2016
alone. Moreover, recent adverse experiences with capital ‘blow out’
have significantly detracted from investor appetite for greenfield
copper projects (instead favouring smaller scale expansions to existing
facilities).

Thus, incremental demand due to mass EV penetration could ex-
acerbate an emerging, and somewhat challenging to address, deficit in
this critical metal market. Put simply, significantly higher long term
prices could be required to support the required investment in meeting
the need for increased conductivity. Given the often very extended lead
times in bringing product to market (average greenfield copper projects
currently take around 12 years to permit, finance and build), this could
lead to considerable volatility during any adjustment phase. Nickel is
another case in point: while aggregate demand from EVs is small re-
lative to the market for steel alloys, the requirement for extremely high
purity inputs for cathode manufacture (compared to the manufacture of
stainless steel) has the potential to generate bottlenecks within the
supply chain.

Another important finding concerns the geographical concentration
of raw material demand and auto-chain production growth in resource
importing countries. The modelling in this paper suggests that, for ex-
ample, China’s share of global lithium and cobalt demand for transport
(the dominant end use) is likely to rise to about 68% by 2030. China’s
leading role is likely to have a major bearing on raw material trade
flows and concomitant supply chain risks. However, risks differ at each
stage of the production chain, with market power in battery chemicals
and cell manufacturing currently heavily consolidated in China, South
Korea and Japan (who account for around 85 percent of current cell
production).

Policy makers will need to be cognisant of these issues and risks,
raising a clear need to design energy policy in parallel with wider re-
source and materials sector policies. Rapid growth in mineral demand
reinforces the need for effective policies to ensure adequate recycling as
well as land and waste water management; and will further sharpen the
importance of effectively managing environmental and social risks as-
sociated with mining and metal processing. However, the policy im-
plications of this co-dependency could be broader still: from a devel-
opmental perspective, for example, new patterns of demand and
resource prices could impact long term macro-fiscal performance and
policies, particularly in resource rich countries; and elevate strategic
trade risks for key raw materials among importing countries (which has
the potential to shape future international trade and foreign policy al-
liances).

Yet it should be acknowledged that the approach taken in this paper
is not free of limitations. While efforts have been made to contextualise
the implications of the EV revolution on the raw materials sector, taking
account of some of the current and prospective market realities, the
demand-side approach stops short of formalising supply side effects
(especially when both forces interact with each other and are coin-
cidentally impacted by other factors). For example, automation could
enhance mining productivity while benefiting the popularisation of EVs
via a better cost structure. Recycling and second-life of batteries, which
are not modelled in the CoMIT framework for the sake of simplicity,

could have important implications for behaviour or EV customers and
metal supply once they become more economically viable thanks to
better economies of scale [75] and technological breakthroughs. In
addition, the results are sensitive to a large set of assumptions regarding
future market conditions and drivers. However, the framework de-
scribed in this paper is open to regular revision of data and assump-
tions, as well as the re-calibration of key structural relationships, in
order to ensure robust projections on an ongoing basis.
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Appendix A. Modelling the powertrain mix of LDVs in China

China’s EV support program is targeted at BEVs, PHEVs, and FCEVs;
together they are referred to as New Energy Vehicles (NEVs).21 The
NEV program was first developed in 2010 and has been one of the key
pillars boosting EV sales in recent years through its subsidy schemes for
producers and other financial and non-financial incentives offered to
consumers and producers.22 China plans to phase out financial in-
centives for producers by 2020. Instead producers are regulated by the
dual credit system.

This is a reform that demonstrates the determination of China’s
government to promote NEVs but shifts the development pressure to
manufacturers and importers of passenger vehicles [76]. At the heart of
the dual credit system is an independent and non-profit platform de-
veloped by the Ministry of Industry and Information Technology (MIIT)
to evaluate whether automotive companies meet the annual targets set
by the government, which demand manufacturers and importers make
quantifiable progress in increasing the share of NEVs (measured by a
score) and reducing Corporate Average Fuel Consumption (CAFC).
Hitting targets for both CAFC and NEVs credits are compulsory for large
companies, defined as those that produce and import 30,000 units and
above while smaller companies are required to meet CAFC target only
[77]. A surplus in NEV credit (i.e., a firm produces and imports more
NEVs than required) is tradable and can be used to offset a deficit in
CAFC credit. A surplus in CAFC is not tradable but is allowed to be
transferred to affiliated companies or carried forward to support future
compliance. Failure to meet these credit targets may results in the de-
nial of type approval for new models.

21 HEVs are regarded in the same category as ICEVs.
22 Total EV sales increased from virtually zero in 2012 to 0.8 million units by

2017 as a result of this policy.

B. Jones, et al. Applied Energy 280 (2020) 115072

21



The government announced targets for NEVs score at 10% for 2019
and 12% for 2020. Targets for 2021 and later years remain unknown. It
is assumed that the targets will continue to increase at the rate 2%/
year, reaching 32% in 2030. At the same time, is it assumed that there is
a road-map of CAFC targets for the representative cars in China (litters/
100km) at 5.1 in 2020, 4.1 in 2025 and 3.2 in 2030. These stringency
rules affect the relative prices of different power trains and alter the
TCO structure used in this paper. The final dynamics of powertrain mix
calculated based on these above assumptions result in that assumptions
in Supplementary Table 2.

Appendix B. Supplementary material

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.apenergy.2020.115072.
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