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ARTICLE

Tree mode of death and mortality risk factors
across Amazon forests
Adriane Esquivel-Muelbert et al.#

The carbon sink capacity of tropical forests is substantially affected by tree mortality.

However, the main drivers of tropical tree death remain largely unknown. Here we present a

pan-Amazonian assessment of how and why trees die, analysing over 120,000 trees

representing > 3800 species from 189 long-term RAINFOR forest plots. While tree mortality

rates vary greatly Amazon-wide, on average trees are as likely to die standing as they are

broken or uprooted—modes of death with different ecological consequences. Species-level

growth rate is the single most important predictor of tree death in Amazonia, with faster-

growing species being at higher risk. Within species, however, the slowest-growing trees are

at greatest risk while the effect of tree size varies across the basin. In the driest Amazonian

region species-level bioclimatic distributional patterns also predict the risk of death, sug-

gesting that these forests are experiencing climatic conditions beyond their adaptative limits.

These results provide not only a holistic pan-Amazonian picture of tree death but large-

scale evidence for the overarching importance of the growth–survival trade-off in driving

tropical tree mortality.

https://doi.org/10.1038/s41467-020-18996-3 OPEN

#A list of authors and their affiliations appears at the end of the paper.
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Tropical forests are key components of the global carbon
cycle, and none more so than Amazonia, which stores
150–200 Pg of carbon1 and accounts for ~12% of the ter-

restrial carbon sink2,3. Mortality, rather than productivity, con-
trols the spatial distribution of carbon storage across the Basin4

and strongly impacts the variation in carbon sink capacity over
time2. Despite the great significance of tree death to this eco-
system, the contribution of different mechanisms to tree mortality
across Amazonia remains unclear. More generally, the poor
understanding of risk factors behind tropical tree mortality limits
our ability to realistically represent this process in Earth-System
models, hampering robust projections of the carbon cycle under
future climate scenarios5,6.

Tree mortality arises from the interaction of characteristics of
the species and the tree with the environment, resulting in phy-
siological failure or structural damage leading to death7,8. Phy-
siological failure may be caused by senescence, stress-related (i.e.
light competition, moisture stress, pathogen attack) loss of phy-
siological vigour9 or by the impairment of water transport as a
consequence of hydraulic failure10,11. Trees that die from
physiology-related causes tend to die standing. Structural failure
happens as a consequence of storms and treefalls, leading to stem
breakage or uprooting12. However, tree death may involve the
interaction of several processes. For instance, long-term physio-
logical stress can make trees more vulnerable to ultimately dying
from structural failure8. Nevertheless, direct observations of the
exact processes and conditions that cause tree death are extremely
rare (but see refs. 13,14), making information from standardised,
long-term forest monitoring plots the principal means we have to
derive large-scale geographical patterns and differentiate among
the potential drivers of tree mortality. In plots, the inferred mode
of death (standing vs. broken or uprooted) can be used to provide
the basis for understanding the causes of death.

We expect the spatial patterns of the causes of death to be
related to the regional variations in climate15, forest structure and
dynamics4,12 present across the Amazon. Previous studies show
structural failure to dominate mortality events in the fertile
Western region, where trees adopt a more acquisitive strategy,
investing more in growth and less in wood structure12. Across the
Amazon Basin there is a strong gradient of precipitation sea-
sonality, ranging from extremely wet conditions with high rainfall
across the entire year in the Northwest to a markedly seasonal
climate with a prolonged (up to 7 months) dry season in the
South15. Death by physiological failure is expected to be greater in
drier regions and where the proportion of standing dead trees is
higher.

Attributes of individual trees, such as size, are expected to
influence the likelihood of tree mortality and provide inference as
to the cause of death. For example, mortality by hydraulic failure,
observed during extreme drought events, has been shown to
disproportionately affect larger trees10,16–18. Taller trees with
large crowns are also more likely to be struck by lightning19. Light
competition, on the other hand, is expected to kill mostly small
trees, as these tend to experience low light availability and thus be
closer to their light compensation point, where they may struggle
to fix enough carbon to maintain basic functions7,20. Stress
conditions, such as a shortage of light or water, may lead to
reduced stem growth rate, and ultimately tree death9,21,22. Thus,
the relative stem diameter growth rate of an individual allows us
to infer whether a tree has died from physiological stress. While
tree size has been shown to predict tree death23,24, recent studies
have emphasised the importance of individual growth rate as a
mortality risk factor19. However, the combined influence of tree
size and growth on mortality has only been evaluated for a few
sites in the tropics9, hindering efforts to understand their general
importance as predictors of tree death.

The forensic exercise required to assess the causes of tree
mortality is particularly complex in extremely diverse Amazon
forests, home to ca. 15,000 tree species25,26. These are expected to
vary greatly in their baseline mortality rates and tolerance to
different potential causes of death19,24. The mortality rate of a
given species is expected to be predicted by its mean growth rate,
reflecting a life-history trade-off between growth and
survival19,27. Fast-growing taxa tend to have low investment in
wood structure, thus being more susceptible to mechanical
damage, which leads to shorter life cycles28. Meanwhile, taxa with
lower growth rates tend to invest more in defence and structure,
have high wood density and are expected to have lower mortality
rates29. Despite theoretical expectations, strong evidence for this
trade-off has only been found for saplings and juvenile trees that
experience a larger spectrum of light conditions24,28,30 but not for
adult trees24,28. However, the growth-survival trade-off has only
really been assessed within single sites and never across large
geographical areas. Tolerance to water stress also varies greatly
across species, with drought resistance being an important driver
of the diversity and distribution of Amazon tree species31,32 and
is further expected to influence the likelihood of tree death32,33.

Here, we analyse >30 years of records from 189 long-term
forest plots from the RAINFOR network, including 124,571 trees
(≥10 cm of diameter at breast height) and 23,683 tree deaths
distributed across Amazonia to provide a biome-scale spatial
assessment of mode of tree death. Using a Cox proportional
hazard approach, we analyse the risk of death related to char-
acteristics of the individual tree (size and growth prior to death)
and species traits (species mean growth rate, maximum stem
diameter, wood density and drought tolerance—proxied by bio-
geographic water-deficit affiliation (WDA)31), providing the
most comprehensive assessment of the risk factors of tree mor-
tality across Earth’s largest tropical forest domain. Our analyses
show the influence of the growth-survival trade-off within
adult trees defining large-scale tree mortality patterns and high-
light the spatial variation in mortality risk factors across the
Amazon basin.

Results
Tree mortality rates and mode of death in Amazonia. Mortality
rates vary significantly across the Amazon (Fig. 1), being con-
sistently greater in the Western (2.2% year−1 [95% confidence
intervals (CIs) 2.0–2.3% year−1]) and Southern regions (2.8%
year−1 [2.4–3.4% year−1]) than in the much less-dynamic
Northern (1.3% year−1 [1.2–1.4% year−1]) and East-Central
regions (1.4% year−1 [1.2–1.6% year−1]). At the pan-Amazonian
scale, trees that were found broken or uprooted, likely to have
died as a consequence of structural failure of the stem or roots
(often caused by windstorms), represented 51.2% (48–54%) of all
Amazon tree death. This proportion is indistinguishable from
that of standing dead trees (48.4% [45–52%]) across the basin, in
spite of the very different mechanisms involved.

As expected, where mortality rates were higher, the absolute
rates of both broken/uprooted death and standing death also
tended to be higher (Fig. 2, Appendix S1). However, we did not
observe a consistent link between regional patterns in mortality
rates and the relative importance of different modes of death
(Figs. 1 and 2). The proportion of trees found either broken/
uprooted or standing after death did differ between the highly
dynamic Western region, where most trees die broken/uprooted
(55%, [51–59%]), and East-Central Amazonia, where mortality
rates are low and broken/uprooted trees accounted only for 39%
(28–50%) of tree death. However, in the most dynamic forests of
Southern Amazonia, broken/uprooted trees contributed to only
44% (37–52%) of tree death. In the least-dynamic Northern
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region, the proportion of broken/uprooted (49%, [41–57%]) and
standing death (51%, [42–59%]) were equivalent and did not
differ significantly from the much more dynamic Southern
region.

Factors influencing risk of tree death. Tree mortality risk across
the Amazon depends both on the characteristics of the individual
tree, and on its species-level traits (Table 1). Models explaining
tree death with both tree-level variables and species traits per-
formed better than models with either group of risk factors alone
(Table 1). But the condition of tree and species is not equal:
models with only species traits (ΔAIC= 497) predict mortality
better than models containing only tree-level attributes (ΔAIC=
3283) (Table 1).

Species mean growth rate was the best predictor of tree death,
accounting for the highest individual χ2 in all regions and being
the single risk factor whose removal from the full model resulted
in the highest ΔAIC (1734) (Tables 1 and 2). In all regions, fast-
growing species were at higher risk. All predictors except WDA
were found to be important risk factors in the pan-Amazonian
analysis, with smaller and light wooded species having higher
mortality rates (Table 2 and Fig. 3c–e).

When considering tree-level predictors, relative growth rates
were a significant risk factor for Amazonian trees (Fig. 3 and
Table 2), greatly enhancing the performance of mortality models
(ΔAIC= 260 when tree-level growth was excluded from the full
model, Table 1). Tree size was also an important risk factor for
tree death; however, it was less so than growth rate (ΔAIC= 226,
Table 1).

Although risk factors associated with mortality were generally
consistent among the different Amazonian regions, we observed

some spatial variation in the coefficients associated with specific
risks (Fig. 3 and Table 2). For instance, in Southern Amazonia,
the driest of all regions, species tolerance to drought was an
important predictor of tree mortality, with wet-affiliated species
being at greater risk (Fig. 3f). In East-Central Amazonia, the only
region where standing death was more prevalent than broken/
uprooted death (Appendix S1 and Fig. 2), the risk associated with
tree-level relative growth rate was greater than in any other region
(Fig. 3b and Table 2). In Western and Southern Amazon, smaller
trees were at greater mortality risk, while in East-Central
Amazonia, larger trees were more at risk (Fig. 3a and Table 2).

We repeated our pan-Amazonian risk analysis independently
for trees that died standing and for those that died uprooted/
broken. Again, as for the general model, species attributes were
more important than tree-level factors for both modes of death
(Table S4). However, we found differences in the relative
importance of specific risk factors for different modes of death
(Tables S4 and S5), with slower-growing trees tending to be at
greater risk of standing death than of being broken/uprooted
(Figure S2 and Table S5).

Discussion
We provide the most comprehensive and geographically dis-
tributed assessment of Neotropical tree mortality yet attempted.
Previous studies of the mode of tree death in Amazon forests have
been highly localised in nature (e.g. refs. 13,34,35) or restricted to a
small number of plots (e.g. ref. 12). We show that catastrophic
structural damage is likely to be a common cause of mortality
across the Amazon, with 51.2% (SE= 48–54%) of dead trees
being found broken or uprooted. It has been suggested that the
proportion of trees that die from structural failure should be

0 500 1000

Broken
uprooted

Standing

1500 km

Stem mortality (% year–1)

0.4 2 10

Fig. 1 Tree mortality rates and mode of death across Amazonia and adjacent lowland forests. Circles show the mean mortality rate across the entire
time series available for each plot (% year−1). Pie charts show the proportion of dead trees found standing (darker shading) and broken/uprooted (paler
shading). Different colours represent the four geological regions: Northern (green), East-Central (red), Western (yellow) and Southern (blue). Mortality
rates per plot were calculated as the mean value across all censuses weighted by the census-interval length.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18996-3 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:5515 | https://doi.org/10.1038/s41467-020-18996-3 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


6

5

4

3

2
a

a

1

0

North East-Central West South

North East-Central West South North East-Central West South

A
ll

N
or

th

E
-C

W
es

t

S
ou

th A
ll

N
or

th

E
-C

W
es

t

S
ou

th

3

2

1

0

3

2

1

0

80

60

20

40

0

b

a

c

a

a

a

c

ac

a

b bc

ab

a

a

b

ab
b

a

b

Standing Broken/uprooted

c d

b

S
te

m
 m

or
ta

lit
y 

ra
te

s 
%

 (
ye

ar
–1

)
S

te
m

 m
or

ta
lit

y 
ra

te
s 

(%
 y

ea
r–1

)

M
od

e 
of

 d
ea

th
 (

%
)

Fig. 2 Tree mortality rates in Amazonia. a Stem mortality rates per region. b Mean proportions and 95% confidence intervals (error bars) of dead trees
found standing or broken/uprooted (faded colours). c Stem mortality rates for trees that died standing. d Stem mortality rates for trees that died broken or
uprooted. Different colours represent the four Amazonian geological regions: Northern (green), East-Central (red), Western (yellow) and Southern (blue).
Mortality rates per plot were calculated as the mean value per plot across all censuses weighted by the census-interval length. In a, c and d, boxplots show
the median, 25th and 75th quantile and whiskers represent 5th and 95th quantile or mortality rates across plots. Letters in a–d show the results from post
hoc Tukey’s tests comparing the proportions and rates among the different regions. Note that in b comparisons are independent for standing and for
broken/uprooted dead trees. The proportion in b and the mortality rates in c, d were calculated based on 125 plots where at least 50% of dead trees and at
least 5 trees had their mode of death registered.

Table 1 Comparison between different Cox proportional hazard models predicting tree mortality across Amazonian forests.

Tree-level coefficients Species-level coefficients ΔAIC Model description

Rel. growth+ D+D2 Max D+mean growth+WD+WDA 0 Full model
Rel. growth+ D+D2 Max D+mean growth+WD 0.4 Excluding WDA
Rel. growth+ D Max D+mean growth+WD+WDA 132 Linear relationship with size
Rel. growth+ D+D2 Max D+mean growth+WDA 139 Excluding WD
Rel. growth Max D+mean growth+WD+WDA 226 Excluding stem size
D+D2 Max D+mean growth+WD+WDA 260 Excluding stem relative growth

Max D+mean growth+WD+WDA 497 Species-level risk factors only
Rel. growth+ D+D2 Mean growth+WD+WDA 1330 Excluding species max size
Rel. growth+ D+D2 Max D+WD+WDA 1734 Excluding species mean growth

Mean growth 2652 Species mean growth only
Rel. growth+ D+D2 3283 Tree-level risk factors only
Rel. growth 3591 Relative growth only

3646 Null model

Models vary according to risk factors considered, including tree-level characteristics: size, represented by tree diameter (D) and relative stem diameter growth rates (rel. growth) and species traits:
maximum stem diameter size (maxD), mean stem diameter growth rate (mean growth), wood density (WD) and drought tolerance represented as water-deficit affiliation33 (WDA). The importance of
each risk factor is represented by comparing models based on the difference in Akaike’s Information Criterion (ΔAIC). The model with the lowest AIC is the one that contains the best combination of
variables and is used as the reference for model comparison. Models are considered different when ΔAIC is >2. The full model was the best model after comparison using the stepAIC R function.
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related to overall mortality rates12,36. We find little evidence for
such a relationship: while the proportion of trees dying broken/
uprooted does dominate in the dynamic forests of Western
Amazonia, in both the most dynamic region of the Amazon—the
South—and the least—the North—broken/uprooted and standing
death were in similar proportion to each other (Fig. 1). These
results thus demonstrate that spatial variation in mortality rates
cannot be explained simply based on a physiological (standing)
rate, which is incremented by a spatially varying risk of mortality
by structural failure, as previously proposed36. Instead, our results
suggest that competition and other drivers of physiological failure
also show large spatial variation.

We found species life-history strategies to be more important
than the characteristics of the individual trees for predicting tree
mortality across Amazonia (Tables 1 and 2), consistent with
previous local studies19. In particular, we show that a great part of
the variation in the hazard rates is explained by the species mean
growth rates (Table 1). This result provides strong empirical
support for the growth-longevity trade-off hypothesis across
tropical species29, showing that this trade-off is also pervasive
across adult trees and consistent across forests with distinct
species composition and under different climatic and edaphic
characteristics36.

The growth of individual trees was a fundamental predictor of
mortality across all Amazonian regions, indicating that trees often
undergo a period of slow growth prior to death (Tables 1 and 2).
Despite the overall importance of tree growth across the whole
Basin, the risk factor associated with it is greater in East-Central
Amazonia, where most dead trees are found standing (Figs. 1
and 3). Interestingly, individual growth was an important pre-
dictor of mortality for trees that died broken or uprooted, as well
as those that died standing (Table S5), suggesting that some
degree of physiological failure may increase the susceptibility of
these trees to being broken or uprooted (Table S5 and Figure S2).

Observational studies often focus on tree size as a predictor of
death16,17,23,24. Here, although both the linear and the U-shaped
risk factor related to tree size were significant for the model at the
Basin level, the effect of size was not consistent across the dif-
ferent regions. The decreasing mortality risk with size in Western
and Southern Amazon (Fig. 3a and Table 2) can be understood in
terms of the dominance of broken/uprooted as a mode of death.
When a tree is broken or uprooted, it is likely to kill several
smaller ones, resulting in greater risk for smaller trees. In addition
to this collateral death, in the drier Southern region belowground
competition for water may also contribute to the greater death of
smaller trees. The opposite effect is observed in East-Central
Amazonia, where broken/uprooted death is rare and larger trees
were at greater risk (Table 2).

Despite evidence for occasional widespread acute events of
large drought-induced mortality14,37–39, our results suggest that
drought is a significant driver of tree death only in the dry
southern fringes of the basin15 where species water-deficit
affiliation had a significant role in predicting mortality (Fig. 3
and Table 2). This is somewhat surprising as these forests are
expected to be relatively adapted to dry conditions when com-
pared to other Amazon forests. This result could be an outcome
of drought-adapted species having longer lifespans when com-
pared to drought-vulnerable ones. However, this seems not to be
the case in our data as we find no relationship between the species
growth rates and their drought affiliation for Southern Amazonia
(R2= 0.0001, P value= 0.1). Thus, the selective mortality of the
most vulnerable species indicates that these communities are
already experiencing climatic extremes that go beyond the con-
ditions to which these species are adapted40,41. Surprisingly,
drought-tolerant species were at greater risk of death in
East-Central Amazonia. We interpret this to be a potentialT
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consequence of a trade-off between flood and drought resistance.
Mortality here has been previously related to wet climate
anomalies14 and this region suffered flooding caused by the
extreme 1989 wet season, known to have increased tree mortality
rates of particular species42.

Our results also have major implications for modelling tropical
forest dynamics. Fully capturing the dynamics of tropical forests
in vegetation models, including those in Earth-System models,
will require explicit computation of tree demography, alongside
plant functional descriptions that include tree longevity strategies.

Together, the species traits and tree-level predictors identified
here can provide a robust empirical underpinning for simulating
tree mortality in the Amazon. The empirical relationships found
here can be directly incorporated into individual-based size-
structured vegetation models, such as done by Fauset et al.43. The
linkage between mortality probability and individual relative
growth can also be readily incorporated into the size-cohort-
based vegetation models, which are becoming increasingly
widespread6, replacing widely applied theoretical approaches,
which are hard to parameterise in practice44. However, even
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models without a full cohort structure can still benefit sub-
stantially from the relationships identified here (Table 1). Such
implementations in models will also benefit from further work to
link these equations to environmental variables.

In summary, we show that the risk factors related to tree death
vary across the different Amazonian regions. Species traits pre-
dicted tree death better than the tree-level characteristics, indi-
cating that changes in species composition across these forests33

are likely to alter their baseline mortality rates. Climate also
contributes to the spatial variation in risk, with species drought
vulnerability significantly predicting death in the dry fringes of
the Amazon. Thus, forests at the limits of the biome are poten-
tially experiencing climatic conditions beyond those to which
they are optimally adapted. Future work should focus on the
temporal analysis of risk factors shown here to gain insights into
the potential drivers of increasing tree mortality documented
across Amazon forests2. Together, our results change the current
understanding of the macroecological patterns of tree death in the
tropics and can help predict the future dynamics of the largest
tropical forest on Earth.

Methods
Forest inventory data. We investigated tree mortality in 189 long-term forest
inventory plots across the Amazon basin as part of the RAINFOR45 network, accessed
via the ForestPlots.net repository46,47. All plots analysed are located in lowland
(<1000m.a.s.l.), terra firme, intact forest and were monitored regularly—we did not
include in the analyses plots in which the difference between census intervals was >10
years. Plots smaller than 0.5 ha were excluded, or else joined together when <1 km
apart. The average census interval is 2.8 years (95% CI= 2.7, 2.9) and the average plot
size is 1.23 ha (95% CI= 1.1, 1.37) with a total area of 331.05 ha.

Plot monitoring followed a standard protocol48 for which full details can be
found elsewhere2. In brief, all trees and palms that have a stem diameter at 1.3 m
(or above buttresses) of ≥10 cm are measured, tagged and identified, when possible,
to the species level. In every census, when the plot is revisited, the living trees are
measured, the new recruits that attain stem diameter ≥10 cm are tagged and
measured, and notes are taken about the dead trees. Lianas and nonwoody
arborescent individuals from the families Strelitziaceae and Cyatheaceae were
excluded from these analyses.

Mortality rates. Plot-level mortality rates were calculated for the 189 plots as the
mean mortality rates across all censuses, weighted by the census-interval length
between two consecutive censuses. Tree mortality rates in % year−1 for each census
were calculated as49

m ¼ 1� Nt1

Nt0

� �1
T

 !
´ 100; ð1Þ

where Nt1 is the number of individuals that survived the census interval, Nt0 the
initial number of individuals and T the time span between two consecutive cen-
suses. To provide a better understanding of the spatial drivers of mortality, mor-
tality rates were also calculated for four Amazon regions (Northern, East-Central,
Western and Southern Amazonia) that differ strongly in geological age and soil
substrate50. Mortality rates for the different regions were compared using post hoc
Tukey’s test by applying the function TukeyHSD from the R package stats51.

Basin- and region-level mortality rates were estimated as the bootstrapped
mean and 95% CI of the mortality rates weighted by the area of the plot calculated
from 10,000 weighted means of randomly resampled values of plot‐level mortality
rates across all plots.

Dead trees were diagnosed as having died standing or non-standing (broken or
uprooted) following a standardised protocol for assessing the mode of death based
on an analysis of the tree when it is found dead12,48. This information allowed us to
assess the proportion of trees within different modes of death and to calculate
mortality rates for each of them. These rates were calculated using Eq. 1, but in this
case Nt1 is the number of individuals that did not die either standing or broken/
uprooted. This analysis included 125 plots where the mode of death was recorded
following a standardised protocol48 for at least 50% of the dead trees and at least 5
individuals. This represents a total of 16,599 dead trees assessed for mode of death.

Depending on the length of the census interval, trees that die standing might
break. Although the protocol allows for trees that are found broken to be classified
as having died standing if there are indications that that was the case12,48, the
proportion of standing vs. broken trees might depend on the length of the census
interval. To correct for this potential bias, we accounted for the census-interval
length when calculating the proportion of trees within these two modes of death
groups (standing and broken/uprooted). First, we tested the influence of census
interval on these proportions by fitting linear models where the plot-level
proportion of dead trees in one of these groups (standing and broken/uprooted)

(Pmod) is a function of the mean census-interval length across all censuses in a
given plot (CIL):

Pmod ¼ β0 þ β1CILþ ε: ð2Þ
This approach allowed us to determine that the proportion of broken/uprooted

dead trees increases by 4% year−1 (R2= 0.12, p value <0.01). In Eq. 2 we centred
the CIL to have a mean of zero and used the intercept of the model (β0) as the
corrected proportion of trees that died standing or broken/uprooted. Here β0
represents the proportion of a certain mode of death at the mean CIL across
all plots.

Subsequently, we estimated the proportions of each mode of death for the
different geological regions while accounting for the effect of census-interval length
by including it as a covariate in a model of mode of death against region:

Pmod ¼ β0 þ β1CILþ β2regionþ ε: ð3Þ
In Eq. 3 we estimated the regional proportions of each mode of death to be

estimated while statistically controlling for the effect of census-interval length. We
tested for the differences in the proportions of trees found standing vs. those found
broken/uprooted within and among the different Amazonian regions by
comparing the 95% CIs around the regional means from Eq. 3, using the function
confint from the R package stats51. We further applied a post hoc Tukey’s test
comparing the difference in mode of death across Amazonian regions using the
function glht from the R package multcomp52.

Species traits and tree-level information. Species traits (wood density, max-
imum size, mean growth and climate affiliation) were obtained from previous
studies. Wood density data (in g cm−3) were obtained using previous studies from
measurements in different areas of the Amazon53. WDA (in mm) was derived in a
previous study using relative abundances across 513 inventory plots distributed
along a large water-deficit gradient across the Western Neotropics31. WDA has
shown to be an important metric of drought vulnerability successfully predicting
drought-induced mortality in several drought experiments from different Neo-
tropical forests32. Mean growth (in mm year−1) was obtained from Coelho de
Souza et al.29 and maximum stem diameter size (in mm) was estimated by Coelho
de Souza et al.29 and Esquivel-Muelbert et al.33, these previous studies were based
on a large number of inventory plots distributed across Amazonia. The maximum
size represents the 95th quantile of the distribution of size and growth rates across
all individuals of a given species29,33. In the cases where species-level traits were
missing for species the mean trait value of the genus was used. If the genus
information was missing, we used the mean trait value of the family. To those trees
belonging to families that had no trait information, we assigned the mean trait
value of all individuals of the plot (cf. refs. 29,54,55). Species-, genus- and family-
level maximum size data were missing for 14%, 6% and 3% of the stems, respec-
tively. For mean growth rates at species, genus and family level, information was
missing for 16%, 7% and 3% of the stems (Table S2).

The characteristics of the individual tree considered were its size (diameter, D)
and relative growth rate (rel. growth), calculated as

rel: growth ¼ ðDt1 � Dt0Þ=T
Dt0

; ð4Þ

where T is the time span between the antepenultimate (t0) and the penultimate
census (t1) when the tree was observed in our data. Dt0 and Dt1 are the diameter in
the antepenultimate and the penultimate census, respectively. Palms (Arecaceae)
were excluded from the main survival analyses as they do not have horizontal
growth. Trees with relative growth rate more negative than −5% year−1 (75 in
total, 0.06% of the total number of stems) were excluded from the analyses, as such
negative stem growth is not biologically possible and likely to be a
measurement error.

Size was obtained from the penultimate census in which the tree was recorded
(Dt0). Previous studies indicate a U-shape relationship between diameter and
mortality23,24. We tested for this U-shape relationship including diameter (D) in
our models as a polynomial function:

fsize ¼ β1Dþ ðβ2D2Þ: ð5Þ

Analytical approach. We performed survival analyses to identify the risk of death
related to different species traits and the condition of individual trees. We used the
Cox proportional hazard model, which estimates the influence of risk factors on the
time-to-event response. This model differs from logistic regression as it accounts
for the time to event (here time to death) to occur for each individual tree56. Our
models included risk factors that describe the characteristics of the tree (relative
growth rate and tree size) and characteristics of the species (i.e. mean growth rate,
maximum diameter, wood density and drought affiliation):

hðtÞ ¼ h0ðtÞ ´ expðX0βþ zbÞ; ð6Þ
where h0 is the baseline mortality, t is the time for the mortality to happen, X is a
vector of risk factors (x1, x2…), β is a vector of the corresponding coefficients, z is
the random effect, that is, plot, and b its corresponding coefficient. We consider
plot as a random effect (z), as trees are nested within plots and this factor allows us
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to account for plot characteristics, for example. number of censuses, edaphic and
climatic conditions.

Our compilation of species- and tree-level characteristics resulted in seven
potential predictors for our analyses. To verify potential collinearity between these
variables (Figure S1), we calculated the variance inflation factor (VIF) for the model
including all variables (Table S3) using function vif from the R package rms57. As
none of the initial predictive variables show high VIF58 (i.e. >10) they were all
maintained in our analyses.

To select the combination of variables that best predicted mortality, we
performed a forward and backward selection on the full model with the risk factors
described above. We used the function stepAIC from the R package MASS59

selecting for the model that minimises the Akaike’s information criterion (AIC)60,61.
Finally, the importance of individual risk factors in describing mortality was tested
by comparing the AIC of models with different structures and by comparing the χ2

associated with each risk factor.
To understand how the causes of mortality vary across the Amazon, the survival

analysis described above was repeated for each of the four Amazonian geological
regions: Northern, East-Central, Western and Southern. The best model selected
for the whole basin was applied to each of the regions allowing comparison for risk
factors among them.

To perform the survival analysis, we used data from 158 plots that were
monitored three or more times. This included information from 116,431 trees, of
which 21,272 died during the monitoring period. This analysis was repeated for
trees that died standing and fallen (i.e. broken and uprooted) separately for
68,593 trees and 11,980 deaths (3639 standing, 5409 fallen and 2932 with mode
of death not identified) within the 116 plots where this information was available
and followed the criteria described here and in the Forest inventory data section
(results are presented in Appendix S3). All analyses were performed using the R
software version 3.5.251. The R package survival was used for all survival
analyses62.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The source data underlying the analyses in the main text are available at https://www.
forestplots.net/en/publications#data. Source data are provided with this paper.

Code availability
The codes and instructions to perform the analyses and generate the figures shown in the
main text are available at https://github.com/AEMuelbert/AmazonTreeMortality.
git; https://doi.org/10.5281/zenodo.3979106. Data for the analyses are available as a
ForestPlots.net data package at https://doi.org/10.5521/forestplots.net/2020_6. Source
data are provided with this paper.
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