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Abstract  

The calcium-sensing receptor (CaSR) is a class C GPCR that plays a fundamental role in extracellular 

calcium homeostasis by regulating parathyroid hormone (PTH) release. Although CaSR was 

identified over 25 years ago, new mechanistic details of how CaSR controls PTH secretion have 

recently been uncovered demonstrating heteromerization and phosphate binding affect CaSR-

mediated suppression of PTH release. Additionally, understanding of how CaSR performs diverse 

functions in different cellular contexts is just beginning to be elucidated, with new evidence of tissue-

specific regulation, and endosomal signaling. Insights into CaSR activation mechanisms and signaling 

bias have arisen from studies of CaSR mutations, which cause disorders of calcium homeostasis. 

Functional assessment of these mutations demonstrated the importance of the homodimer interface 

and transmembrane domain in biased signaling, and showed CaSR mutations can facilitate G-protein-

independent signaling. Population genetics studies have allowed a greater understanding of the 

prevalence of calcemic disorders and revealed new pathophysiological roles.   
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Introduction 

The calcium-sensing receptor (CaSR), plays a critical role in extracellular calcium (Ca2+
e) 

homeostasis by regulating parathyroid hormone (PTH) release and urinary calcium excretion (Figure 

1). CaSR binds Ca2+ within its extracellular venus fly-trap (VFT) domain1,2 to activate signaling 

pathways via: Gi/o, suppressing cAMP and activating mitogen-activated protein kinase (MAPK); and 

Gq/11-phospholipase-C (PLC), mobilising intracellular calcium (Ca2+ i) release and activating 

MAPK3,4. CaSR mutations cause disorders of calcium homeostasis. Inactivating mutations cause 

familial hypocalciuric hypercalcemia type-1 (FHH1), characterized by lifelong elevated serum 

calcium, moderate-to-high PTH concentrations and low renal calcium excretion; and rarely cause 

neonatal severe hyperparathyroidism, which can be fatal if untreated5. Activating CaSR mutations 

cause autosomal dominant hypocalcemia type-1 (ADH1), characterized by mild-to-moderate 

hypocalcemia, with inappropriately low-to-normal serum PTH5. Additionally, inactivating mutations 

in the G-protein-α11 (Gα11), by which CaSR signals, and the adaptor protein-2 σ-subunit (AP2σ), 

which regulates endocytosis, cause FHH2 and FHH3, respectively; while activating Gα11 mutations 

cause ADH26-8. This review focusses on studies from the last three years and begins with new insights 

into CaSR-mediated control of PTH secretion, before discussing how CaSR mutations have provided 

insights into receptor activation, internalization; and diverse physiological functions. 

 

Regulation of PTH secretion 

PTH acts on bone to enhance resorption, and at kidneys to activate calcium reabsorption and 

stimulate 1,25-dihydroxyvitamin D (1,25(OH)2D), which mobilises intestinal calcium absorption 

(Figure 1). A number of new mechanisms by which CaSR regulates PTH secretion have recently been 

uncovered9-12.  

The transient receptor potential canonical channel-1 (TRPC1) is expressed at plasma 

membranes and mediates calcium entry in response to PLC-coupled receptor activation or calcium 

store depletion13. TRPC1 has recently been described to facilitate CaSR-mediated suppression of PTH 

secretion10,13 (Figure 2A). Trpc1-/- mice have hypercalcemia, inappropriately high PTH, and reduced 

urinary calcium excretion; their parathyroid glands (PTG) have impaired PTH secretion; and CaSR-

mediated signaling is reduced and PTH secretion enhanced in rat parathyroid-like cells (PTH-C1) 

depleted of Trpc110. These effects were independent of Ca2+
i store depletion, but were Gα11-

dependent, with co-immunoprecipitation indicating Gα11 may interact with TRPC110. Whether 

TRPC1, Gα11 and CaSR form a complex together to potentiate the effects of CaSR on PTH secretion 

remains to be investigated10.     

Heteromer formation between CaSR and γ-aminobutyric acid-B1 receptor (GABAB1R) has 

recently been shown to regulate tonic PTH secretion9 (Figure 2B). In mouse PTG, the GABAB1R 

agonist baclofen stimulates acute PTH secretion, particularly in low Ca2+
e ranges, whilst a GABAB1R 

antagonist reduced PTH-max9. In contrast, mice with PTG-specific ablation of GABAB1R had reduced 
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serum calcium and PTH, and their PTG had reduced tonic PTH secretion9. In PTH-C1 cells, 

GABAB1R expression decreased the efficacy of high Ca2+
e to activate Gi and Gq, while addition of 

baclofen further exacerbated the effects9. Treatment with baclofen alone did not modulate cAMP or 

IP1, indicating heteromer formation is required for GABAB1R effects. CaSR-GABAB1R heteromers 

also contribute to pathophysiology: PTGs of patients with primary or secondary hyperparathyroidism 

(PHPT and SHPT, respectively) had increased heteromer expression; while in mice, deletion of 

GABAB1R alleviated serum PTH excess and hypercalcemia in mice lacking one CaSR allele, and 

rescued mice from early death in bialleic CaSR knockouts9. It is hypothesised that baclofen transmits 

a conformational change from GABAB1R to CaSR to reduce Gq and Gi activation9. Further studies are 

required to understand these activation mechanisms.  

Phosphate is known to stimulate PTH secretion, but how cells detect phosphate has only 

recently been revealed11. Based on CaSR crystal structures, that harbour putative anion-binding sites, 

Centano et al hypothesised that CaSR may detect phosphate1,11. Using HEK293 overexpressing CaSR 

(HEK-CaSR), pathophysiological concentrations of phosphate, observed in chronic kidney disease 

(CKD), were shown to significantly reduce CaSR-mediated Ca2+
i and pERK signaling11. In isolated 

human parathyroid cells and mouse PTG, PTH secretion was increased by high phosphate, and 

reduced when phosphate was restored to physiological levels. CaSR-null mice had no phosphate-

mediated stimulation of PTH secretion11. An Arg62 residue is critical for phosphate binding: HEK293 

expressing Arg62Ala lost phosphate-mediated inhibition of CaSR; and Arg62 forms a salt bridge in 

the CaSR active state between lobes of the VFT domains, which is broken in the presence of 

phosphate11 (Figure 2). Thus, phosphate regulates the equilibrium of active-inactive CaSR. Elevated 

plasma phosphate shifts the equilibrium towards the inactive conformation, permitting elevated PTH 

secretion, which may contribute to SHPT and bone loss observed in CKD1.  

In addition to hyperphosphatemia, elevated FGF23 and klotho contribute to SHPT in 

CKD14,15. FGF23 is secreted by bone in response to elevated serum 1,25(OH)2D and phosphate, and 

by PTH in vitamin D-independent mechanisms14-17. FGF23 binds to FGF-Receptor-1 (FGFR1), which 

with its co-receptor klotho, reduces renal expression of sodium-phosphate-cotransporters to increase 

phosphate excretion18. Elevated serum calcium and FGF23 suppress PTH production by negative-

feedback mechanisms, which are disrupted in CKD, resulting in simultaneous increases in serum PTH 

and FGF2312. Why these regulatory mechanisms are disrupted is incompletely understood but recent 

studies using mice with PTG-specific deletions of CaSR (PTHCre;CaSRfl/fl), klotho 

(PTHCre;KLPTGfl/fl) or both CaSR and klotho (DKO) has revealed klotho regulates PTH secretion in 

CaSR-dependent and -independent mechanisms12. Both DKO and PTHCre;CaSRfl/fl mice had reduced 

body weights, shorter life expectancies, hypercalcemia and hypophosphatemia12. Serum PTH, FGF23 

and 1,25(OH)2D were elevated in PTHCre;CaSRfl/fl mice and significantly higher in DKO mice12. The 

PTG of PTHCre;CaSRfl/fl and DKO mice were enlarged and had increased proliferation, which was 

more severe in DKO mice12. These studies indicate klotho is a negative regulator of PTH synthesis in 
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the absence of CaSR12. Klotho expression was decreased in CaSR-deleted PTGs, and reciprocally, 

CaSR expression was reduced in PTHCre;KLfl/fl; while co-immunoprecipitation experiments indicated 

klotho and CaSR may interact12. This is consistent with previous studies in which PTGs of patients 

with PHPT, SHPT, and end-stage renal failure have reduced CaSR and klotho expression19,20. Further 

studies are required to understand how CaSR and klotho function together to control PTH. 

  

Tissue-specific bias 

The CaSR is widely expressed and has diverse physiological functions indicating tissue- or 

ligand-specific CaSR signaling may exist. Two recent publications provide possible insights into this 

phenomenon.  

CaSR activation in osteoblasts is essential for differentiation and bone remodeling21. Studies 

indicate CaSR in osteoblasts activates Akt pathways that phosphorylate β-catenin, facilitating nuclear 

translocation and promoting expression of genes involved in differentiation and growth22. Recent 

studies revealed a role for the scaffold protein Homer1 in CaSR-Akt pathways23. Silencing CaSR or 

Homer1 in human osteoblasts reduced Ca2+-induced phosphorylation of Akt, GSK-3α/β, β-catenin and 

mTOR, and nuclear translocation of β-catenin23; and suppressed alkaline phosphatase activity23. In 

HEK-CaSR, Ca2+
e did not phosphorylate Akt, but transfection of Homer1 restored Akt signaling23, 

indicating this pathway may only be present in tissues expressing Homer1.  

CaSR is inhibited by protein kinase-C (PKC)-mediated phosphorylation at Thr888. However, 

cells expressing the ADH1 mutant Thr888Met, which cannot be phosphorylated, had residual 

signaling, indicating other phosphorylation sites likely exist24,25. Ser875 was predicted as another PKC 

regulatory site, based on phosphorylation sites in related class C GPCRs25. Cells expressing 

Ser875Ala had increased pERK activity similar to that of Thr888Ala, while cells expressing a double 

mutant CaSR (S875A/T888A) had increased Ca2+
e sensitivity, indicating an additive effect when both 

phosphorylation sites are mutated25. Distinct tissue- or ligand-specific phosphorylation patterns could 

be envisaged that activate different signaling pathways as demonstrated for other GPCRs25-27 and 

remains to be further investigated.  

 

Receptor activation and signaling bias  

Studies of the >400 germline CaSR mutations has provided insights into CaSR activation 

mechanisms demonstrating the importance of the homodimer interface and TM3-TM6, similar to 

other GPCRs5,28 (Figure 3). FHH1 and ADH1 extracellular domain mutations cluster in the 

homodimer interface, loop 1 and 2 (which span the interface to stabilise dimerization), and ligand-

binding sites1,2,5. FHH1 transmembrane domain (TMD) mutations are present in the TM1-TM2-TM7 

interface, consistent with studies showing loss-of-function GPCR mutations concentrate in these 



6 

 

regions5,29. However, there is a larger cluster of inactivating mutations at TM5. In other class C 

GPCRs TM5 is important in dimerization in the inactive state, which then evolves into a TM6-TM6 

interface on receptor activation30,31. Therefore, these FHH1 mutations may prevent TMD transitions 

that are important for receptor activation. Consistent with this, ADH1 transmembrane domain (TMD) 

mutations cluster at the extracellular side of TM6-ECL3-TM71,2,5, indicating TM6 movement is likely 

important in receptor activation and that ADH1 mutations may favour formation of an active receptor. 

Residues in which both inactivating and activating mutations occur are also clustered at the dimer 

interface, TM3 and TM632, and are associated with signaling bias. These residues are hypothesised to 

act as molecular switches that undergo conformational changes on ligand binding, and their mutation 

facilitates receptor structures that preferentially signal via Ca2+
i or pERK32.  

Studies of an ADH1-associated Arg680Gly mutation provides further details regarding CaSR 

activation. Arg680Gly biases signaling to enhance MAPK pathways via a G-protein-independent β-

arrestin-mediated pathway33.  Homology modelling and mutagenesis studies revealed Arg680 forms a 

critical salt-bridge with Glu767 in extracellular loop-2. Its disruption is predicted to allow lateral 

displacement of TM3 away from TM4 and TM5, facilitating β-arrestin binding33,34 (Figure 3). The 

study of an autoantibody to CaSR, causing acquired hypocalciuric hypercalcemia, has revealed further 

insights into biased signaling. This autoantibody targets the VFT and acts as an allosteric modulator 

that favours activation of Ca2+
i and impairs pERK signaling35. This autoantibody was hypothesised to 

act in a similar way to allosteric modulators of the GPCR taste receptors which target the VFT and 

facilitate conformational changes in which the TM5-TM6 interface evolves into closer interactions 

between TM6-TM635,36. Detailed studies of other CaSR mutations, and those in its signaling protein 

Gα11, are likely to provide further insights into receptor activation and G-protein coupling5,28.  

 

CaSR internalization  

Unlike other GPCRs, CaSR is constantly exposed to its ligand, and the ability of the receptor 

to respond to Ca2+
e fluctuations is aided by the existence of large intracellular reserves of mature 

CaSR that can rapidly mobilise to cell surfaces by agonist-driven insertional signaling (ADIS)37. A 

lack of consensus regarding CaSR internalization has existed, but was understood to be largely 

constitutive38,39.  

Two recent studies have investigated CaSR endocytosis in detail. Total internal reflection 

fluorescence microscopy (TIRFm) was used to measure ADIS and CaSR internalization 

simultaneously40. These studies showed internalization of CaSR by constitutive and agonist-driven 

mechanisms, which was recently confirmed using diffusion-enhanced resonance energy transfer 

(DERET) assays41. DERET studies also showed the negative allosteric modulator, NPS-2143, and 

positive allosteric modulator, NPS-R-568, reduce and enhance internalization, respectively41. Using 

G-protein inhibitors and CRISPR/Cas9-edited cells lacking Gq/11 or β-arrestin1/2, CaSR constitutive 
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internalization and agonist-driven internalization were shown to require β-arrestin1/2, but were 

largely G-protein-independent41. In contrast, TIRFm studies using the same knockout cells showed 

Gq/11 is required for internalization40. More detailed studies using both experimental systems are 

required to investigate the role of G-proteins in CaSR internalization.  

TIRFm studies demonstrated AP2σ mutations reduce ADIS and prolong residency time in 

clathrin structures resulting in impaired CaSR internalization, with a net increase in CaSR surface 

expression40. However, AP2σ mutations reduce CaSR-mediated signaling7,40. To explain this paradox 

it was proposed that CaSR may continue signaling from within cells (sustained signaling)40, which has 

previously been shown for other GPCRs42-46 (Figure 4). A MAPK sustained signal was demonstrated 

in CaSR-expressing cells that was sensitive to the dynamin inhibitor Dyngo and dominant-negative 

Rab5, and was absent in AP2σ mutant cell-lines40. Furthermore, while plasma membrane signals 

required both Gq/11 and Gi/o, sustained signals were mediated by Gq/11 only, indicating spatially-

directed G-protein selectivity by CaSR40. Detailed investigation of sustained signaling in different 

CaSR-expressing tissues is required to determine whether compartmental bias accounts for diverse 

CaSR functions. 

 

Pathophysiology using large-scale population genetics 

Recent studies of CaSR variants in the DiscovEHR cohort comprising 51,289 individuals 

showed 60% had at least one common or rare (mean allele frequency <0.01) CaSR variant47. 

Investigation of serum calcium levels of these individuals showed: nonsense/frameshift variants were 

associated with serum calcium concentrations outside the normal range; individuals with missense 

variants predicted to be benign were normocalcemic; while individuals with variants predicted to be 

pathogenic and shown to functionally impact CaSR expression and/or signaling, had changes in serum 

calcium47. This allowed prediction of prevalence estimates within the population of 74.1 per 100,000 

for FHH1, and 3.9 per 100,000 for ADH1, far greater than previous analyses47,48.  

Three common CaSR variants (Ala986Ser, Arg990Gly, Glu1011Gln) have previously been 

inconsistently associated with pathologies including variations in urinary calcium excretion, serum 

calcium concentrations, nephrolithiasis and coronary artery disease49-55. The DiscovEHR cohort 

revealed: a positive association with serum calcium, hypercalcemia and hyperparathyroidism for the 

Ala986Ser variant; while the Arg990Gly variant was negatively associated with serum calcium 

(Smelser et al, bioRxiv doi: 10.1101/644559). A much larger study utilising data from the UK 

biobank and 25 cohorts from the UK, USA, Europe, and China, similarly identified associations 

between Ala986Ser and serum calcium changes. This was not associated with changes in bone 

mineral density or risk of fracture56. Therefore, common CaSR variants may be associated with 

lifelong elevated serum calcium levels.  

Associations with other pathologies were also explored in the DiscovEHR cohort. Consistent 

with previous studies54,55,57, individuals with the Ala986Ser variant had increased risk of 
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cardiovascular disease, while the Arg990Gly variant was associated with reduced risk of 

cardiovascular disease (Smelser et al, bioRxiv doi: 10.1101/644559). A PheWAS of rare CaSR 

variants also identified associations with cardiovascular disease. Other disease associations included: 

a significant increase in type-2 diabetes in individuals homozygous for Ala986Ser; a reduction in 

CKD in homozygous Arg990Gly individuals; and rare CaSR variants were associated with 

neurological diseases including dementia and depression, as well as fractures. Further studies in 

diverse tissues are required to determine whether the CaSR has direct effects or whether these disease 

associations are secondary to changes in serum calcium.  

 

Summary 

Recent studies have highlighted new potential targets for the treatment of calcium-sensing 

disorders. Dual therapies targeting both CaSR and other proteins involved in PTH secretion can be 

envisaged; while studies of mutant CaSR proteins have provided important insights into receptor 

activation that can aid drug design. Additionally, new understandings regarding tissue-specific and 

sustained signaling offer new avenues to explore for future therapies.  
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Figures and Tables 

Figure 1 Relationship between PTH, 1,25(OH)2D, FGF23 and klotho 

 

Reductions in serum calcium stimulate PTH secretion from the parathyroid glands. PTH acts at: bone 
to enhance resorption leading to increased efflux of calcium and phosphate; and kidney reducing 
calcium excretion and enhancing 1,25(OH)2D synthesis, which stimulates calcium absorption by 
intestines. The net effect is to normalize serum calcium levels. Elevations outside the normal range 
activate CaSR on PTG leading to suppression of PTH. In the FGF23-klotho axis (effects shown in 
green), FGF23 is produced by bone and binds to FGFR-klotho, which reduces PTH secretion and 
plasma membrane expression of sodium-phosphate transporters (NPT) at the renal proximal tubule. 
Reduction of NPT at plasma membranes reduces phosphate uptake and increases urinary excretion. 
FGF23 also inhibits 1,25(OH)2D production and may directly target the PTG to reduce PTH secretion. 
Figure adapted from Quarles et al, 2008, JCI58.   
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Figure 2 New insights into how CaSR regulates PTH secretion 

 

(A) Schematic showing the proposed role for TRPC1 in PTH secretion from a parathyroid gland 

(PTG) cell. Recent studies show that TRPC1 suppresses PTH secretion from PTG downstream of 

CaSR in response to high extracellular Ca2+ concentrations. Co-immunoprecipitations indicate that 

TRPC1 may directly interact with Gα11. (B) Schematic showing the proposed role of CaSR-GABAB1R 

heteromers in PTG. CaSR homomers couple to Gq and Gi to activate phospholipase-C (PLC) and 

calcium mobilization, and reduce cAMP, respectively. Both signaling pathways reduce PTH 

secretion. In CaSR-GABAB1R heteromers (illustrated as a 1:1 stoichiometry, although these details 

are yet to be elucidated), GABAB1R impairs CaSR signaling by preventing G-protein coupling to 

CaSR. GABAB1R is important for tonic PTH secretion. (C) Left: Crystal structure showing how 

phosphate interacts with the Arg62 residue in the CaSR venus fly-trap domain to maintain the inactive 

state. Right: Close view of Arg62 and phosphate in the active and inactive states. In the active state 

Arg62 in the upper lobe forms a salt-bridge (black dotted line) with Glu227 on the lower lobe. This is 

broken in the presence of phosphate (inactive state). Images adapted from Centano et al, Chang et al, 

Onopiuk et al9-11. Structures use inactive and active structures from Geng et al1 (PDB:5K5T, 

PDB:5K5S)1.  
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Figure 3 CaSR mutations provide insights into receptor activation 

 

(A) Cartoon of the active CaSR homodimer showing locations of calcium-binding sites (CBS1–4) 

based on crystal structures (PDB:5K5S)1. The CaSR comprises a bi-lobed venus fly-trap domain 

(VFTD) and a cysteine-rich domain (CRD). (B) Structure of the CaSR protomer showing the location 

of all published FHH1 mutations (blue), ADH1 mutations (red) and sites of both FHH1 and ADH1 

mutations (green). Mutations in the ECD are concentrated at the homodimer interface and close to 

calcium-binding sites. (C) Homology model of the CaSR transmembrane region based on the 

structure of class C GPCR metabotropic glutamate receptor 5 (mGluR5)31. FHH1 mutations are 

present in the TM1-TM2-TM7 interface as observed for other inactivating GPCR mutations. 

However, there is a cluster of mutations in TM5 indicating this region may be important in retaining 

the receptor in its inactive state. ADH1 mutations cluster in TM6-ECL3-TM7 indicating TM6 

movement is likely important in CaSR activation as observed for other GPCRs. (D) Homology model 

of the CaSR TM3, TM7 and ECL2 region, reproduced from Gorvin, et al, 201833. The homology 

model is based on the published structure of metabotropic glutamate receptor 1 (GluR1)59. The 

Arg680 residue is shown projecting from TM3 and is predicted to form a salt-bridge with Glu767 on 
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ECL2. Its disruption is predicted to allow lateral displacement of TM3 away from TM4 and TM5, 

facilitating β-arrestin binding33. 
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Figure 4 CaSR signals from the plasma membrane and endosomes 

 

The CaSR exists at plasma membranes as a homodimer. Mature CaSR is made at the Golgi and exists 

in large intracellular reserves that can be rapidly mobilized to the cell surface in response to receptor 

activation in a process known as agonist-driven insertional signaling (ADIS). CaSR signals from the 

plasma membrane predominantly via Gq and Gi. CaSR endocytosis is both constitutive and agonist-

driven. AP2σ plays an important role in CaSR internalization and mutations in the protein cause 

FHH3. CaSR is also able to activate sustained signals from the endosome that use Gq. Mutations in 

AP2σ impair ADIS, CaSR internalization and sustained signaling.  


