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Abstract ��

Informal electrical and electronic waste (e-waste) handling activities constitute a potentially ��

important source of halogenated (HFRs) and organophosphate flame retardants (OPFRs) to the ��

environment and humans. In this review, two electronic databases (ScienceDirect and Web of ��

Science Core Collection) were searched for papers that addressed this topic. A total of 82 relevant ��

studies (including 72 studies selected from the two databases and 10 studies located from the ��

references of the first 72 selected studies) were identified that reported on human external and 	�

internal exposure to HFRs and OPFRs arising as a result of informal e-waste handling activities. 
�

Compared to the general population, higher levels of external exposure (i.e., inhalation, ingestion, ��

and dermal absorption) and internal exposure (i.e., blood serum, hair, breast milk, urine, and other ���

human matrices) to HFRs and OPFRs were identified for e-waste recyclers and residents inhabiting ���

e-waste dismantling and recycling zones, especially for younger adults and children. Food intake ���

and dust ingestion were the dominant exposure pathways for the majority of brominated flame ���

retardants (BFRs) and dechlorane plus (DP); while inhalation was identified as the most significant ���

pathway of human exposure to OPFRs in informal e-waste sites. The majority of research to date ���

has focused on China and thus future studies should be conducted in other regions such as Africa ���

and South Asia. Other suggested foci of future research are: examination of exposure via dermal �	�

contact with e-waste, dietary exposure of local populations to OPFRs, confirmation of the existence �
�

of and cause(s) of the higher body burdens of females compared with males amongst populations ���

impacted by informal e-waste handling, and characterisation of exposure of such populations to ���

chlorinated paraffins. ���

 ���

Keywords: WEEE; Brominated flame retardants; Organophosphate esters; Chlorinated paraffins ���

 ���

Main findings: Inhalation contributes most to human exposure to OPFRs, and dietary intake ���

contributes most to human exposure to BFRs and DPs. Children and females are more exposed. ���

 �	�

1. Introduction �
�

Electrical and electronic waste (e-waste), also called waste electrical and electronic equipment ���

(WEEE), has become a global concern. In 2019, global generation of e-waste reached 53.6 million ���
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tonnes (Mt), and this figure is estimated to reach 74 Mt by 2030 and 120 Mt by 2050, respectively ���

(Forti et al., 2020; World Economic Forum, 2019). Typically, household appliances like washing ���

machines, telecommunications, and IT equipment including computers, and consumer articles like ���

TVs, comprise the majority of e-waste generated globally (Akram et al., 2019). Due to ���

environmental and economic considerations, much of the e-waste generated in high-income ���

countries has and continues to be exported for handling in low- and moderate-income countries ���

(Mihai et al., 2019; Pathak et al., 2017). Although measures outlined in the Basel Convention were �	�

designed to prohibit the export of hazardous wastes to low- and moderate-income countries, these �
�

are unlikely to be effective as some used electrical and electronic equipment is characterised as non-���

hazardous waste (Khan, 2016). Moreover, it was not until June 2019 when the EU clarified their ���

determinations on the regulation of persistent organic pollutants (POPs), that many non-hazardous ���

WEEE items would be reclassified as hazardous and become subject to the Hazardous Waste ���

Regulations 2005 (Official Journal of the European Union, 2019). Moreover, in low- and moderate-���

income countries, approximately 90 % of e-waste disposal and recycling activities are undertaken ���

by informal sector workers (Pathak et al., 2019). In India, for instance, 97 % of total e-waste ���

generated is handled by informal recycling yards in major cities like Delhi, Mumbai, Hyderabad, ���

and Bangalore (Rao et al., 2017). �	�

 �
�

This is concerning as various contaminants including halogenated flame retardants (HFRs) and ���

organophosphate flame retardants (OPFRs) can enter environmental media through different ���

activities reported to be undertaken at informal e-waste handling facilities. Informal e-waste ���

activities refer to unlicensed or unregulated e-waste dismantling and recycling activities that are ���

usually practiced by individuals and families using primitive techniques. These include: open ���

burning, acid leaching, and heating (Leung, 2019). The risks posed by such emissions are ���

compounded by the lack of effective personal protective equipment for use by those undertaking ���

such work, as well as by absence of other measures designed to protect the environment and human ���

health (Lundgren, 2012). HFRs and OPFRs have been widely used as additives at concentrations of �	�

up to 10-15 % by weight in the plastic housing of various electric and electronic products to ensure �
�

that these products meet fire safety regulations (Lassen and Havelund, 2006). However, from the ���

mid-2000s onwards, concerns about the adverse environmental and human health impacts of HFRs ���
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like polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDD) would lead ���

to restrictions and bans on their manufacture and use in new products in many jurisdictions, ���

including their listing under the Stockholm Convention on POPs of the United Nations Environment ���

Programme (UNEP) (Ge et al., 2020; Harrad, 2015; Huang et al., 2018; Ma et al., 2017b). As a ���

result, there has been increased demand for OPFRs and other HFRs such as tetrabromobisphenol-A ���

(TBBP-A), novel brominated flame retardants (NBFRs), dechlorane plus (DP), and chlorinated ���

paraffins (CPs) (Chen et al., 2015; Ge et al., 2020; Gravel et al., 2020; He et al., 2017; Liu et al., �	�

2016; Ma et al., 2017a; Zeng et al., 2018, 2020). �
�

 ���

Previous studies have determined high concentrations of HFRs and OPFRs in environmental media 	��

(Anh et al., 2017; Iqbal et al., 2017; Qin et al., 2019; Wang et al., 2018; Zheng et al., 2015b) and 	��

foodstuffs (Anh et al., 2017; Huang et al., 2018; Tao et al., 2016; Zheng et al., 2015a) at various 	��

informal e-waste dismantling and recycling sites such as Bui Dau (Vietnam), Guiyu and Qingyuan 	��

(China), and�Karachi (Pakistan). Such findings indicate high external exposure of local populations 	��

(resident exposure) to HFRs and OPFRs through inhalation (Iqbal et al., 2017; Qin et al., 2019), 	��

ingestion (Anh et al., 2017; Huang et al., 2018), and dermal absorption (Wu et al., 2016a). Elevated 	��

internal exposure of local residents has also been demonstrated by reported concentrations of HFRs 		�

or OPFRs in human matrices like serum (Guo et al., 2018, 2020; Lv et al., 2015), hair (Liang et al., 	
�

2016; Qiao et al., 2019), milk (Li et al., 2017), and urine (Lu et al., 2017; Shi et al., 2019) in informal 	��

e-waste sites in South China (e.g., Qingyuan, Luqiao, and Wenling). Such evidence of elevated 
��

human exposure has raised concerns about potential adverse health effects on populations impacted 
��

by informal e-waste treatment (Akram et al., 2019; Asante et al., 2019; Awasthi et al., 2016, 2018; 
��

Bakhiyi et al., 2018; Orisakwe et al., 2019; Shi et al., 2018). For instance, BFRs are endocrine 
��

disruptors (Eguchi et al., 2015; Guo et al., 2018, 2019b; Zheng et al., 2017a, 2017b), and could exert 
��

adverse effects on human semen quality (Yu et al., 2018); while OPFRs have been associated with 
��

greater DNA damage (Lu et al., 2017). Moreover, health effects of HFR and OPFR exposure on 
��

fetuses and infants are of particular concern due to their substantially weaker resistance and 
	�

immunity (Bai et al., 2019; Li et al., 2018; Xu et al., 2015; Zheng et al., 2017b). 

�

 
��

The present review aims to: 1) summarise current research into human external exposure (i.e., ���
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inhalation, ingestion of food, dust, and soil, and dermal absorption) and internal exposure (i.e., blood ���

and serum, hair, breast milk, urine, and other human matrices) to HFRs and OPFRs through informal ���

e-waste dismantling and recycling activities for local residents; 2) identify potential health risks to ���

local residents in informal e-waste sites; and 3) highlight substantial research gaps that require ���

urgent investigation. ���

 ���

2. Methods �	�

Between 26/09/2019 and 07/09/2020, two electronic databases (ScienceDirect and Web of Science �
�

Core Collection) were searched for research articles, reviews, book chapters, and other online ���

resources. Terms searched were: “e-waste”, “human exposure”, and “flame retardants”, with only ����

papers published between 2015 and 2020 selected. Using these search criteria, 1651 publications ����

were found on ScienceDirect, with a further 131 papers located on Web of Science Core Collection. ����

Further inspection by the authors comprising screening titles and abstracts identified relevant ����

publications (101 from ScienceDirect and 82 from Web of Science Core Collection). After removal ����

of duplicates (n=33), 150 publications remained for further screening. ����

 ����

These 150 publications were further rated for relevance by screening sampling methodology, ��	�

statistical data presented, and conclusions. As a result, 78 articles were excluded (including one ��
�

article not written in English), leaving 72 publications (consisting of 15 review articles, 4 book ����

chapters, and 53 research articles). In addition, references cited in these 72 selected publications ����

were also reviewed, adding a further 10 publications to the total included in this review. These ����

include: 1) four research papers published before 2015 but essential to this review in terms of data ����

interpretation (Ali et al., 2012; Labunska et al., 2014; Tue et al., 2013; Wang et al., 2010); 2) three ����

publications published between 2015 and 2020 but could not be located under current search ����

techniques due to their different foci (Abdallah and Harrad, 2018; Khan, 2016; Liu et al., 2016); and ����

3) three official reports (Lassen and Havelund, 2006; Lundgren, 2012; United States Environmental ����

Protection Agency, 2017). ��	�

 ��
�

3. Geographical distribution of studies into HFR and OPFR contamination from e-waste ����

handling ����
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It is notable that all the 53 selected research articles were conducted in lower- and upper-middle ����

income countries, according to the latest classification made by the World Bank (World Bank, 2020). ����

These include China (n=39), Vietnam (n=7), Thailand (n=2), Pakistan (n=1), Nigeria (n=1), South ����

Africa (n=1), Ghana (n=1), and Bangladesh (n=1) (Fig. 1). ����

 ����

4 Human external exposure to HFRs and OPFRs arising from informal e-waste activities ����

Previous studies have indicated 3 major pathways of human external exposure to HFRs and OPFRs ��	�

from informal e-waste activities, i.e., inhalation, ingestion of soil, dust, and food, and dermal ��
�

absorption from soil, dust, and e-waste articles (Anh et al., 2017; Huang et al., 2018; Iqbal et al., ����

2017; Qin et al., 2019; Wu et al., 2016a; Zheng et al., 2016). Once HFRs or OPFRs enter the ����

environment through informal e-waste activities, they can transfer between different environmental ����

media (Akram et al., 2019; Anh et al., 2017; Wang et al., 2018; Zheng et al., 2016). Particularly ����

important, HFRs and OPFRs can enter the food chain through bioconcentration and ����

biomagnification, thereby entering the human body through food ingestion resulting in exposure to ����

individuals beyond those directly undertaking e-waste handling, including young children (Anh et ����

al., 2017; Sun et al., 2018; Wu et al., 2019; Zheng et al., 2016). Transfer of HFRs and OPFRs ����

between different environmental media and resultant human external exposure pathways are shown ��	�

in Fig.2, with recent studies (i.e. those published between 2015 and 2020) concerning human ��
�

external exposure to OPFRs and HFRs (including PBDEs, NBFRs, HBCDDs, TBBP-A, DPs, and ����

CPs) through informal e-waste handling activities summarised in Tables S1-S5 (Supplementary ����

Material). ����

 ����

4.1 Human inhalation exposure to HFRs and OPFRs arising from informal e-waste activities ����

Inhalation of air has been highlighted as an important pathway of human exposure to HFRs and ����

OPFRs in informal e-waste dismantling and recycling sites, especially for OPFRs (Awasthi et al., ����

2016; Iqbal et al., 2017; Jiang et al., 2019; Luo et al., 2016). A study conducted in four e-waste ����

recycling sites (Jacob Lines, Surjani Town, Lyari, and Shershah) in Karachi City, Pakistan identified ��	�

human inhalation exposure to a range of HFRs and OPFRs. Specifically, these comprised: 8 PBDE ��
�

congeners (BDE-28, -47, -99, -100, -153, -154, -183, and -209), 6 NBFRs (pentabromoethylbenzene ����

(PBEB), hexabromobenzene (HBB), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB), 1,2-����
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bis(2,4,6-tribromophenoxy) ethane (BTBPE), bis(2-ethylhexyl)-3,4,5,6-tetrabromophthalate (BEH-����

TBP), and decabromodiphenylethane (DBDPE)), 7 OPFRs (tris-(2-chloroethyl)-phosphate (TCEP), ����

tris-(2,3-dichloropropyl)-phosphate (TDCIPP), ethylhexyl diphenyl phosphate (EHDPP), tris(2-����

ethylhexyl)phosphate (TEHP), tri-n-butyl phosphate (TnBP), tris-(2-chloroisopropyl)-phosphate ����

(TCIPP), and tri-phenyl phosphate (TPHP)), as well as 2 isomers of DP (syn- and anti) (Iqbal et al., ����

2017). The authors reported human inhalation exposure to OPFRs to be the highest (2334 ng/kg ����

bw/day), with the average daily dose of TPHP, TEHP, TnBP, TCEP, EHDPP, TCIPP, and TDCIPP ��	�

being 1042 ng/kg bw/day, 308 ng/kg bw/day, 301 ng/kg bw/day, 230 ng/kg bw/day, 173 ng/kg ��
�

bw/day, 162 ng/kg bw/day, and 118 ng/kg bw/day, respectively (Iqbal et al., 2017). This was ����

followed by PBDEs (19.1 ng/kg bw/day), SNBFRs (13.7 ng/kg bw/day), and DP (5.42 ng/kg bw/day) ����

(Iqbal et al., 2017). The calculated exposure doses were much lower than the reference doses ����

suggested in previous literature for some of the target compounds (Table 1), indicating little health ����

risk caused by inhalation exposure. However, accurate assessment of risk is difficult since no ����

reference doses for mixtures of FRs (HFRs and OPFRs) are available, and the elevated exposures ����

ranging between 2876 and 12087 ng SFRs/kg bw/day are notable. ����

 ����

In comparison, human inhalation exposure to HFRs and OPFRs in Guiyu and Qingyuan, two major ��	�

e-waste recycling zones in China, was much lower (Luo et al., 2016; Wu et al., 2016a). In 2012, ��
�

samples of atmospheric particles were collected in Qingyuan and analysed for 12 OPFRs (2 isomers ����

of TnBP, TCEP, TCIPP, TDCIPP, TPHP, tris(2-butoxyethyl) phosphate (TBOEP), EHDPP, TEHP, �	��

and 3 isomers of tris(2,4,6-trimethoxyphenyl)phosphine (TMPP)) (Luo et al., 2016). Of the 12 �	��

OPFRs, TEHP, and the 3 isomers of TMPP were not detected in any sample, and the average total �	��

concentration of the remaining 8 OPFRs was 130±130 ng/m3. This indicates a mean daily inhalation �	��

dose of 12.1±4.1 ng SOPFRs/kg bw/day for an average adult (TBOEP: 6.8±4.1 ng/kg bw/day, TnBP: �	��

2.85±0.59 ng/kg bw/day, TIBP: 0.87±0.60 ng/kg bw/day, TCIPP: 0.64±0.28 ng/kg bw/day, TCEP: �	��

0.33±0.20 ng/kg bw/day, TDCIPP: 0.25±0.12 ng/kg bw/day, TPHP: 0.18±0.06 ng/kg bw/day, �	��

EHDPP: 0.172±0.049 ng/kg bw/day, respectively) (Luo et al., 2016). In Guiyu, daily inhalation �		�

doses of BDE-47 and -99 were estimated to be 0.55 ng/kg bw/day and 0.33 ng/kg bw/day for adults, �	
�

and 1.77 ng/kg bw/day and 1.07 ng/kg bw/day for children, respectively (Wu et al., 2016a). Given �	��

that this was much lower than the health based limit values (HBLVs) presented in previous studies �
��
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(Table 1), it is reasonable to conclude that human inhalation exposure to OPFRs and PBDEs in �
��

Qingyuan and Guiyu presented a low health risk. �
��

 �
��

4.2 Human ingestion exposure to HFRs and OPFRs arising from informal e-waste activities �
��

4.2.1 Dust ingestion �
��

Because of their relatively high octanol-air (KOA) and octanol-water partition coefficients (KOW), �
��

many HFRs like high brominated PBDEs and NBFRs are likely to accumulate in atmospheric �
	�

particles and body lipids (Ji et al., 2017; Jiang et al., 2019; Luo et al., 2016; Ma et al., 2017a, 2017b; �

�

Zheng et al., 2015a). An increasing number of studies have identified high concentrations of various �
��

HFRs and OPFRs in indoor dust and foodstuffs, indicating that human exposure to HFRs and OPFRs ����

through indoor dust and food ingestion is non-negligible (Anh et al., 2017; Huang et al., 2018; Zeng ����

et al., 2016, 2018; Zheng et al., 2015b, 2016). For instance, Zheng et al. (2015b) determined ����

concentrations of 8 PBDE congeners (BDE-28, -47, -99, -100, -153, -154, -183, and -209), 4 NBFRs ����

(BEH-TBP, TBB, BTBPE, and DBDPE), 8 OPFRs (TEHP, TnBP, TCEP, TBOEP, TPHP, EHDPP, ����

TDCIPP, and TCIPP), and 2 isomers of DP (syn- and anti-) in indoor dust samples from some of the ����

largest e-waste dismantling and recycling sites in China (Longtang, Dali, and Guiyu), and calculated ����

human exposure to these contaminants through indoor dust ingestion. Assuming average dust ��	�

ingestion rates (20 mg/day for adults and 50 mg/day for children), and average FR concentrations ��
�

in dust; estimated daily intakes (EDIs) of PBDEs, NBFRs, OPFRs, and DPs for adults were: 1.11-����

24.1 ng/kg bw/day, 0.73-20.3 ng/kg bw/day, 1.36-23.5 ng/kg bw/day, and 0.08-1.73 ng/kg bw/day, ����

respectively, with the corresponding values for children 16-352 ng/kg bw/day, 11-296 ng/kg bw/day, ����

20-343 ng/kg bw/day, and 1.18-25.3 ng/kg bw/day, respectively (Zheng et al., 2015b). The highest ����

EDI values (assuming high ingestion of dust (50 mg/day for adults and 200 mg/day for children) ����

contaminated at the 95th percentile concentration) for PBDEs, NBFRs, OPFRs, and DPs were: 168 ����

ng/kg bw/day, 165 ng/kg bw/day, 226 ng/kg bw/day, and 12.8 ng/kg bw/day for adults, and 3915 ����

ng/kg bw/day, 3844 ng/kg bw/day, 5282 ng/kg bw/day, and 298 ng/kg bw/day for children, ����

respectively (Zheng et al., 2015b). Although the calculated exposure doses were lower than the ��	�

reference doses suggested in previous studies (Table 1), the authors concluded that children had an ��
�

EDI of HFRs and OPFRs, that was 1 to 2 orders of magnitude higher than adults. Similar results ����

were reported in Vietnam (Anh et al., 2017) and Thailand (Muenhor et al., 2017, 2018). ����
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 ����

Anh et al. (2017) measured concentrations of 8 PBDE congeners (BDE-28, -47, -99, -100, -153, -����

154, -183, and -209) in samples of home dust and fish from Bui Dau village, a major e-waste ����

recycling site in Vietnam. Total PBDE concentrations in home dust were between 250-8650 ng/g, ����

with BDE-209 being the dominant congener (Anh et al., 2017). It is estimated that the EDI via dust ����

ingestion for adults and children was 0.71-2.47 ng/kg bw/day and 1.04-36.0 ng/kg bw/day under a ����

median dust ingestion scenario (20 mg/day for adults and 50 mg/day for children), and 0.18-6.19 ��	�

ng/kg bw/day and 4.17-144 ng/kg bw/day under a high-end dust ingestion scenario (50 mg/day for ��
�

adults and 200 mg/day for children), respectively (applying an average body weight of 70 kg for ����

adults and 12 kg for children) (Anh et al., 2017). Specifically, it is notable that total PBDE ����

concentrations in home dust and the EDI reported by Anh et al. (2017) were similar to those reported ����

in a previous study conducted in the same area (Tue et al., 2013), indicating that PBDE ����

contamination in this area remained at the same level during the 7-year period (from 2008 to 2015). ����

Furthermore, the substantial increase in PBDE and NBFR concentrations in indoor dust in Qingyuan, ����

China from 2007 to 2013/2014 (Table 2) indicates that e-waste recycling workers and residents ����

became increasingly exposed to BFRs through dust ingestion over this period (He et al., 2017; Wang ����

et al., 2010; Zheng et al., 2015b). This is an interesting situation, seen from the perspective of other ��	�

areas where downward trends of PBDE contaminations have been reported (Harrad, 2015; Ma et ��
�

al., 2017b; Yu et al., 2016). ����

 ����

4.2.2 Dietary intake ����

In addition to dust ingestion, food intake could also be an important exposure pathway of e-waste ����

recyclers and local residents to HFRs (Anh et al., 2017; Huang et al., 2018; Labunska et al., 2014, ����

2015; Tao et al., 2016; Wu et al., 2019; Zeng et al., 2016, 2018). In the same study conducted by ����

Anh et al. (2017), the EDI of 8 PBDE congeners through fish consumption (fish samples were ����

manually collected from ponds and canals located within the e-waste recycling area) for adults and ����

children in Bui Dau village, Vietnam was 0.72-46.4 ng/kg bw/day and 0.89-57.0 ng/kg bw/day, ��	�

respectively. In addition, the EDI of 5 NBFRs (pentabromobenzene (PBBz), HBB, BTBPE, BEH-��
�

TBP, and DBDPE), 2 DP isomers, and 3 HBCDD isomers through consumption of various ����

foodstuffs was 36 ng/kg bw/day, 133 ng/kg bw/day, and 480 ng/kg bw/day for adults, and was 65 ����
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ng/kg bw/day, 350 ng/kg bw/day, and 1500 ng/kg bw/day for children, respectively, in Bui Dau ����

village, Vietnam (Tao et al., 2016). It is notable that the EDI of ∑3HBCDDs for adults and children ����

was 2.4 times and 7.5 times higher than the reference dose (200 ng/kg bw/day), respectively, ����

indicating potential health risk caused by dietary exposure to HBCDDs for local residents, ����

especially for children. In comparison, while human dietary exposure to NBFRs in informal e-waste ����

dismantling and recycling sites in China (Huang et al., 2018; Labunska et al., 2014, 2015) was ����

comparable to that in Vietnam; much higher human exposure to PBDEs (1 to 2 orders of magnitude ��	�

higher) and much lower human exposure to HBCDDs (1 to 2 orders of magnitude lower) was ��
�

observed in China compared to Vietnam (Huang et al., 2018; Labunska et al., 2014, 2015; Wu et ����

al., 2019; Zeng et al., 2016). Furthermore, higher EDIs via food intake were identified for various ����

HFRs in informal e-waste dismantling and recycling sites in China between 2013 and 2016 (Tables ����

S1, S2, S3, and S5, Supplementary Material), especially for DPs, DBDPE, and CPs (Huang et al., ����

2018; Zeng et al., 2018), indicating potentially greater health concerns arising from exposure to ����

HFRs in these regions. ����

 ����

4.3 Human dermal uptake of HFRs and OPFRs arising from informal e-waste activities ����

There is some debate about the contribution of dermal absorption to human external exposure to ��	�

HFRs and OPFRs. While some researchers state exposure risk through dermal contact is almost ��
�

negligible (Wu et al., 2016b), Wu et al. (2016a) suggest that the contribution of dermal absorption ����

to human external exposure to HFRs and OPFRs has been underestimated because previous ����

assessments of dermal exposure have addressed only inadvertent contact with contaminated dust or ����

soil and overlooked dermal absorption of both particulate and gaseous contaminants through air-to-����

skin transfer, as well as from direct skin contact with e-waste articles. Most studies to date have ����

focused on human exposure to HFRs and OPFRs through inhalation and ingestion (Anh et al., 2017; ����

Huang et al., 2018; Iqbal et al., 2017; Luo et al., 2016; Zeng et al., 2016; Zheng et al., 2015b), with ����

some consideration of exposure via dermal absorption limited. Abafe and Martincigh (2015) ����

estimated dermal absorption from dust of 8 PBDE congeners (BDE-28, -47, -99, -100, -153, -154, ��	�

-183, and -209) for e-waste dismantling and recycling workers from Durban, South Africa. Mean ��
�

and high-end exposure estimates were 0.87 ng/kg bw/day and 3.40 ng/kg bw/day, respectively, when ����

an equation adapted from the US Environmental Protection Agency was applied (Abafe and �	��
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Martincigh, 2015). The contribution of dermal absorption, defined as dermal absorption from dust �	��

/ (dust ingestion + dermal absorption from dust), was 40% under a mean dust ingestion scenario (20 �	��

mg/day for adults), and 20% under a high-end dust ingestion scenario (50 mg/day for adults). �	��

However, this was likely underestimated since other dermal pathways such as air-to-skin transport, �	��

especially those of lower brominated congeners considered more easily absorbed by human skin �	��

due to their lower KOW (Abdallah et al., 2015; Wu et al., 2016a), was not considered. In Guiyu, for �	��

example, the daily dermal intake of gaseous BDE-47 and BDE-99 through air-mediated transfer by �		�

adults was estimated to be 0.65 ng/kg bw/day and 0.61 ng/kg bw/day, respectively, exceeding �	
�

exposure via inhalation of both gaseous and particle-bound BDE-47 (0.55 ng/kg bw/day) and BDE-�	��

99 (0.33 ng/kg bw/day) (Wu et al., 2016a). Similar results were also reported by Shen et al. (2019), �
��

who identified higher EDIs of NBFRs, TBBP-A, and HBCDDs through dermal absorption rather �
��

than dust ingestion for recyclers, local adults, and local children in Qingyuan, China (the same �
��

equation adopted by Abafe and Martincigh (2015) was used in this study). Moreover, there appears �
��

to date to have been no consideration of exposure via direct dermal contact with e-waste articles, �
��

which may be a significant omission given recent data demonstrating the importance of dermal �
��

exposure via direct contact with FR-treated fabrics (Abdallah and Harrad, 2018). Overall, dermal �
��

absorption appears to be a potentially underestimated pathway of human external exposure to HFRs �
	�

(and perhaps, OPFRs) for e-waste dismantling and recycling workers or residents inhabiting e-waste �

�

dismantling and recycling zones. �
��

 ����

4.4 Variation in relative significance of different exposure pathways for HFRs and OPFRs ����

PBDEs are the most frequently reported HFRs globally in terms of human external exposure through ����

informal e-waste activities, especially through food and dust ingestion (Table S1, Supplementary ����

Material). Specifically, the EDI of PBDEs through food intake has been suggested to exceed other ����

exposure pathways such as inhalation (Wu et al., 2016a) and dust ingestion (Labunska et al., 2014). ����

In Wenling and Luqiao, China, for instance, the median EDI of PBDEs through food intake was 5 ����

times and 2 times higher than that through dust ingestion for adults and children, respectively, with ��	�

high-end exposure via food intake approximately 10 and 30 times higher than that through dust ��
�

ingestion for adults and children, respectively (Labunska et al., 2014). Higher contribution to human ����

exposure to PBDEs via food consumption than dust ingestion was also identified for adults in two ����
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Vietnamese informal e-waste sites when a medium dust ingestion rate (20 mg/day for adults and 50 ����

mg/day for children) was applied (Anh et al., 2017). Moreover, for children, exposure through food ����

consumption was found roughly equivalent to that through dust ingestion (Anh et al., 2017). ����

However, the contribution of food intake to PBDE exposure was very likely underestimated by Anh ����

et al. (2017), since only fish consumption was included in that study. Furthermore, it is notable that ����

the relative contribution of different pathways varies for different PBDE congeners. In a study ����

conducted by Labunska et al. (2014), the relative contribution of dust ingestion to PBDE exposure ��	�

compared to that of food consumption (defined as EDIdust / (EDIfood + EDIdust), using median ��
�

exposure scenarios) was 1.0%, 2.1%, 0.2%, 0.2%, and 30.5% for BDE-47, -99, -153, -154, and -����

209, respectively, for adults, and 2.3%, 4.3%, 0.5%, 0.5%, and 49% for BDE-47, -99, -153, -154, ����

and -209, respectively, for children. Compared to lower brominated PBDE congeners, the ����

contribution of dust ingestion to overall exposure to BDE-209 is much higher. ����

 ����

Food intake has also been reported as the dominant pathway of human exposure to NBFRs (DBDPE, ����

BTBPE, etc), DPs, and HBCDD. In Bui Dau, Vietnam, the EDI for DBDPE, BTBPE, and 2 isomers ����

of DP through food intake was 5 ng/kg bw/day, 31 ng/kg bw/day, and 133 ng/kg bw/day for adults, ����

and 2.7 ng/kg bw/day, 61 ng/kg bw/day, and 350 ng/kg bw/day for children, respectively (Tao et al., ��	�

2016). This figure was 2 to 4 orders of magnitude higher than exposure via dermal absorption of ��
�

soil and soil ingestion of DBDPE, BTBPE, and DPs in the same area (Someya et al., 2016). Similar ����

results were also reported in Qingyuan, China, where the estimated dietary intake of DBDPE, DPs, ����

as well as α-, β-, and γ-HBCDD were about 1 to 2 orders of magnitude higher than dust ingestion ����

for both adults and children (He et al., 2017; Huang et al., 2018; Shen et al., 2019). ����

 ����

The main pathway of human exposure to OPFRs appears very different to that of BFRs and DPs, ����

with inhalation identified as the most important exposure pathway in a recent study of an informal ����

e-waste site in Pakistan. This study reported human exposure to OPFRs through inhalation to be 3 ����

orders of magnitude higher than via soil ingestion (Iqbal et al., 2017). This result was in agreement ��	�

with studies conducted in Qingyuan, China. Specifically, human exposure to OPFRs through ��
�

inhalation was estimated to be 12.1±4.1 ng/kg bw/day (mean±SD) for adults in Qingyuan, China, ����

which exceeded the EDI via dust ingestion reported by He et al. (2015) (median: 7.02 ng/kg bw/day), ����
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Guo et al. (2019a) (mean: 5.85 ng/kg bw/day), and Zheng et al. (2015b) (mean: 1.36-2.11 ng/kg ����

bw/day) for adults. It is interesting that in both informal e-waste regions in Pakistan and China, non-����

chlorinated OPFRs comprised the majority of total OPFRs exposure via inhalation (Iqbal et al., ����

2017; Luo et al., 2016). This may be attributable to less extensive use of chlorinated OPFRs in ����

electrical and electronic products. Another interesting observation is that, despite the low ����

contribution of food intake to human exposure to OPFRs reported in informal e-waste sites to date, ����

chlorinated OPFRs were more frequently detected in chicken eggs sourced from an informal e-waste ��	�

site in China than non-chlorinated OPFRs (Zheng et al., 2016). This might be explained by the ��
�

relatively longer half-life of chlorinated OPFRs (Ma et al., 2017a).  ����

 ����

Very limited data on human exposure to CPs through informal e-waste activities are available. To ����

the best of our knowledge, only 3 publications have reported human dietary exposure to CPs in ����

informal e-waste sites in China (Yuan et al., 2017; Zeng et al., 2016, 2018), with an increasing trend ����

of human dietary exposure identified in Longtang, China (Table S5, Supplementary Material). ����

Specifically, the EDI of short-chain chlorinated paraffins (SCCPs, C10-C13) through chicken egg ����

consumption increased by 4 times for adults and children between 2013 and 2016, and the EDI of ����

median-chain chlorinated paraffins (MCCPs, C14-C17) also increased by nearly 30% (Zeng et al., ��	�

2018). No data were found about human exposure to CPs through inhalation, dermal contact, or dust ��
�

ingestion. ����

 ����

5 Human internal exposure to HFRs and OPFRs at informal e-waste handling sites ����

In addition to assessments of external exposure, internal human exposure to HFRs and OPFRs has ����

also been frequently examined in various informal e-waste dismantling and recycling areas, with ����

human blood and serum (Chen et al., 2015; Eguchi et al., 2015; Guo et al., 2020; Lv et al., 2015; ����

Schecter et al., 2018), human hair (Chen et al., 2015; Liang et al., 2016; Qiao et al., 2019), human ����

milk (Awasthi et al., 2016; Li et al., 2017; Shi et al., 2018), and human urine (Bai et al., 2019; Lu et ����

al., 2017; Shi et al., 2019; Yan et al., 2018) being the most commonly used biomarkers. An overview ��	�

of recent studies (i.e. those published 2015-2020) of internal human exposure to HFRs and OPFRs ��
�

through informal e-waste handling activities is provided as Tables S6 and S7 (Supplementary ����

Material). ����
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 ����

5.1 Human blood and serum ����

Human blood and serum are frequently used indicators of human internal exposure to HFRs, since ����

HFRs are likely transported into multiple human organs and tissues through blood circulation (Chen ����

et al., 2015; Eguchi et al., 2015; Kuo et al., 2019; Lv et al., 2015; Schecter et al., 2018). In a study ����

conducted in Baoai, an e-waste treatment site in northern Vietnam, serum samples from 40 female ����

e-waste recyclers were collected to assess their internal exposure to various contaminants including ��	�

7 PBDE congeners (BDE-47, -99, -100, -153, -154, -183, and -209) (Schecter et al., 2018). Among ��
�

the analyzed PBDE congeners, BDE-209 (median: 73.3 ng/g lipid; 95% confidence interval (CI): ����

32.4-138.2 ng/g lipid) was dominant, followed by BDE-153 (median: 13.0 ng/g lipid; 95% CI: 10.2–�	��

18.8 ng/g lipid) and BDE-183 (median: 7.3 ng/g lipid; 95% CI: 6.1-10.0 ng/g lipid) (Schecter et al., �	��

2018). PBDE concentrations in serum from e-waste recyclers were 1 to 2 orders of magnitude higher �	��

than those in non-recyclers whose PBDE concentrations in serum were frequently below limits of �	��

detection (Schecter et al., 2018), indicating high occupational exposure of e-waste recyclers to �	��

PBDEs. Similar conclusions have been reached in other studies (Eguchi et al., 2015; Guo et al., �	��

2019b; Liang et al., 2016). For instance, in an e-waste recycling site in Wenling, China and an urban �	��

area where no e-waste recycling activities were undertaken, 14 PBDE congeners (BDE-17, -28, -�		�

47, -66, -99, -100, -153, -154, -183, -203, -206, -207, -208, and -209) and DBDPE were determined �	
�

in serum samples taken from e-waste recyclers, non-occupationally-exposed residents of the e-waste �	��

site, and urban residents (Liang et al., 2016). Mean concentrations of total PBDEs and DBDPE in �
��

serum from e-waste recyclers were 656 ng/g lipid (range: 167-2530 ng/g lipid) and 125 ng/g lipid �
��

(range: 26.7-439 ng/g lipid), respectively. These concentrations exceeded significantly those �
��

detected in serum of non-occupationally-exposed residents (PBDEs: 123 ng/g lipid, range: 45.9-243 �
��

ng/g lipid; DBDPE: 56.1 ng/g lipid, range: 4.20-127 ng/g lipid), and urban residents (PBDEs: 24.6 �
��

ng/g lipid, range: 10.1-48.2 ng/g lipid; DBDPE: 13.8 ng/g lipid, range: nd-33.2 ng/g lipid) (Liang �
��

et al., 2016). Moreover, Zheng et al. (2017b) identified higher PBDE concentrations in serum taken �
��

from donors who lived in an e-waste site for over 20 years than those who lived there for less than �
	�

3 years (Table S6, Supplementary Material), indicating that PBDE concentrations were likely to �

�

increase with increasing duration of residence in informal e-waste sites. �
��

 ����
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It is interesting to note that females have been reported to display greater HFR contamination in ����

serum than males in e-waste-impacted areas. Zheng et al. (2017a) reported that total PBDE ����

concentrations in female serum samples (mean: 2309 ng/g lipid; range: 206-35902 ng/g lipid) were ����

significantly higher (p < 0.05) than those in male serum samples (mean: 690 ng/g lipid; range: 105-����

1806 ng/g lipid) in Qingyuan, China. Specifically, females were found to have significantly higher ����

(p < 0.05) serum concentrations of congeners associated with the Deca-BDE commercial ����

formulation (sum of BDE-196, -197, -202, -203, -206, -207, -208, and -209; mean: 1896 ng/g lipid; ��	�

range: 100-34482 ng/g lipid) than did males (mean: 509 ng/g lipid; range: 64.5-1494 ng/g lipid). ��
�

Moreover, females displayed higher serum concentrations of congeners associated with the Penta-����

BDE formulation (sum of BDE-28, -47, -66, -85, -99, and -100; mean: 125 ng/g lipid; range: 44.6-����

853 ng/g lipid) and Octa-BDEs (sum of BDE-153, -154, and -183; mean: 287 ng/g lipid; range: ����

4.58-2667 ng/g lipid) than males (Penta-BDEs: mean: 104 ng/g lipid, range: 17.1-242 ng/g lipid; ����

Octa-BDEs: mean: 77.3 ng/g lipid, range: 8.02-283 ng/g lipid), but the difference was not significant ����

in this instance (p > 0.05) (Zheng et al., 2017a). Similar findings were also reported by (Chen et al., ����

2015), who found that concentrations of DPs in female serum (median: 230 ng/g lipid, range: 37-����

1400 ng/g lipid) were slightly higher than that in male serum (median: 180 ng/g lipid, range: 22-����

510 ng/g lipid). Unfortunately, no explanation for this difference was provided in either publication, ��	�

and the cause of this gender disparity is unclear. ��
�

 ����

5.2 Human hair ����

As a non-invasive sampling matrix, human hair has been frequently used to measure human internal ����

exposure to HFRs and OPFRs (Chen et al., 2015; Liang et al., 2016; Qiao et al., 2019). A recent ����

study recruited 31 female e-waste dismantling workers from an e-waste recycling site in South ����

China, and measured concentrations of a wide variety of FRs (i.e., 8 PBDE congeners (BDE-28, -����

47, -99, -100, -153, -154, -183, and -209), 2 NBFRs (DBDPE and BTBPE), syn- and anti-DP, and ����

13 OPFRs (TnBP, TCEP, TDCIPP, TBOEP, TEHP, TPHP, EHDPP, triisopropyl phosphate (TiPrP), ����

tri-n-propyl phosphate (TPrP), 3 isomers of tricresyl phosphate (TCP), and TCIPP)) in hair samples ��	�

(Qiao et al., 2019). The mean concentration of SOPFRs (the most abundant FRs) was 431 ng/g ��
�

(range: 189-1558 ng/g), with TBOEP, TCIPP, TEHP, and TPHP the dominant congeners, accounting ����

for 24.2%, 18.7%, 15.9%, and 11.1% of SOPFR concentrations, respectively (Qiao et al., 2019). ����
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For SPBDEs, the mean concentration was 271 ng/g (range: 49.8-2104 ng/g), with BDE-209 ����

dominant (accounting for 92.8% of SPBDEs) (Qiao et al., 2019). For SDPs and SNBFRs, mean ����

concentrations were 61.3 ng/g and 211 ng/g, with ranges of 1.64-360 ng/g and 16.4-991 ng/g, ����

respectively (Qiao et al., 2019). Notably, the study also identified an increasing trend in ����

concentrations of PBDEs, DPs, and NBFRs from 2009 to 2015 (Qiao et al., 2019). Another study ����

conducted by Liang et al. (2016) also indicated high concentrations of PBDEs and DBDPE in human ����

hair, noting that exposure of e-waste recyclers (mean value: 292.9 ng/g for PBDEs and 82.5 ng/g ��	�

for DBDPE) was significantly higher than that of non-occupationally exposed residents (mean value: ��
�

55.8 ng/g for PBDEs and 29.4 ng/g for DBDPE) and urban residents (mean value: 12.9 ng/g for ����

PBDEs and 10.9 ng/g for DBDPE). Significant correlations were reported between concentrations ����

of PBDEs and DBDPE in serum and hair, thereby indicating hair to be a useful matrix for ����

biomonitoring PBDEs and DBDPE exposure in humans (Liang et al., 2016). Similar conclusions ����

were also drawn regarding DPs in human hair, and as highlighted above for serum, it is notable that ����

female hair (median: 200 ng/g; range: 17-1100 ng/g) was more contaminated with DPs than male ����

hair (median: 19 ng/g; range: 6.3-150 ng/g). However, in this instance the gender difference was ����

attributed to the longer external exposure time of female hair (Chen et al., 2015). ����

 ��	�

5.3 Human milk ��
�

Concentrations of HFRs in human milk can not only reflect internal exposure of female adults but ����

also dietary exposure of nursing infants (Shi et al., 2018; Tang and Zhai, 2017). Concentrations of ����

HFRs in human milk and the associated implications for human exposure, especially for infants, ����

have previously been reviewed for China and Africa (Shi et al., 2018; Orisakwe et al., 2019). ����

Specifically, a recent study conducted in an e-waste handling area in Wenling, China, collected 25 ����

human milk samples from mothers who had lived there for over 20 years (defined as the R20 group) ����

and 21 human milk samples from mothers who had resided there for no more than 3 years (defined ����

as the R3 group), and determined concentrations of 8 PBDE congeners (BDE-28, -47, -99, -100, -����

153, -154, -183, and -209) in these samples (Li et al., 2017). It found that SPBDE concentrations in ��	�

the R20 group (mean: 25.7±20.0 ng/g lipid; range: 7.89-90.6 ng/g lipid) exceeded significantly those ��
�

in the R3 group (mean: 6.68±5.61 ng/g lipid; range: 1.87-22.0 ng/g lipid) (Li et al., 2017). The two ����

groups had similar congener profiles of PBDEs, with BDE-209 and -153 being the most abundant ����
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congeners in both groups (Li et al., 2017). Furthermore, the EDI of PBDEs for infants in the R20 ����

group was in the range 15.8-243 ng/kg bw/day (median: 45.3 ng/kg bw/day), while in the R3 group ����

the range was 5.43-43.0 ng/kg bw/day (median: 11.4 ng/kg bw/day) (Li et al., 2017). Although this ����

was much lower than the reference doses of the United States Environmental Protection Agency ����

(2017), the maximum EDI of BDE-47 (76.9 ng/kg bw/day ) and BDE-153 (98.9 ng/kg bw/day) (Li ����

et al., 2017) for nursing infants in the R20 group approached the corresponding reference doses ����

(BDE-47: 100 ng/kg bw/day; BDE-153: 200 ng/kg bw/day). ��	�

 ��
�

5.4 Human urine ����

OPFR metabolites have been measured in human urine samples from e-waste recyclers, including ����

those of both chlorinated and non-chlorinated OPFRs (Bai et al., 2019; Lu et al., 2017; Shi et al., ����

2019; Yan et al., 2018). For instance, Lu et al. (2017) found urinary concentrations of chlorinated ����

and non-chlorinated OPFR metabolites in an e-waste impacted area in Qingyuan, China (mean: 4.0 ����

ng/mL for chlorinated OPFR metabolites and 2.3 ng/mL for non-chlorinated OPFR metabolites) ����

exceeded significantly those in subjects from a rural area (mean: 2.1 ng/mL for chlorinated OPFR ����

metabolites and 0.74 ng/mL for non-chlorinated OPFR metabolites), suggesting substantial human ����

exposure to OPFRs through e-waste handling activities. Negative correlations were determined ��	�

between age and urinary concentrations of each OPFR metabolite, and for bis(2-chloroethyl) ��
�

phosphate (BCEP), bis(1-chloro-2-propyl) phosphate (BCIPP), bis(1,3-dichloro-2-propyl) ����

phosphate (BDCIPP), and diphenyl phosphate (DPHP), the negative correlations were significant �	��

(Lu et al., 2017). These are similar to results reported by Yan et al. (2018) of significantly higher �	��

concentrations of BCEP in urine samples from the 21-30 age group than the older age groups. This �	��

might indicate higher exposure of younger people. However, a survey conducted by Shi et al. (2019) �	��

generated different results, specifically that concentrations of OPFR metabolites in urine samples �	��

from children were significantly lower than for adults who have been participating in e-waste �	��

treatment for years. This discrepancy could be explained by the different sampling methodologies �	��

adopted. In particular, only residents (and no e-waste workers) were sampled by Lu et al. (2017), �		�

while only e-waste recyclers were sampled by Yan et al. (2018), which means the difference between �	
�

occupational and non-occupational exposure was not considered. However, the results reported by �	��

Shi et al. (2019) could be explained by high occupational exposure of adults since the children were �
��
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not involved in e-waste recycling activities. No data was found about concentrations of HFRs (or �
��

metabolites) other than chlorinated OPFRs in urine samples from e-waste dismantling and recycling �
��

areas. �
��

 �
��

5.5 Other human matrices �
��

Xu et al. (2015) compared 8 PBDE congeners (BDE-28, -47, -99, -100, -153, -154, -183, and -209) �
��

in human placental tissue samples from an e-waste recycling site (Guiyu, China) and a reference �
	�

area (Haojiang, China). The study found that PBDE concentrations were much higher in samples �

�

from the e-waste recycling site (mean: 61.39±85.42 ng/g/lipid; range: 0.89-516.97 ng/g lipid) than �
��

those from the reference area (mean: 13.03±195.46 ng/g/lipid; range: 0.66-195.46 ng/g/lipid). This ����

could indicate higher exposure not only for mothers but also for fetuses in the e-waste recycling site ����

since partitioning of PBDEs from mothers to fetuses is considered as an important pathway of ����

exposure of fetuses to PBDEs (Xu et al., 2015; Zheng et al., 2017b). High concentrations of PBDEs ����

were also detected in human nails, abdominal subcutaneous adipose tissue, and umbilical cord tissue ����

from residents inhabiting informal e-waste sites in China (Li et al., 2018; Lv et al., 2015; Meng et ����

al., 2020). Apart from PBDEs, some OPFR metabolites (i.e., dibutyl phosphate (DBP) and DPHP) ����

were also frequently detected in amniotic fluid samples (Bai et al., 2019), indicating fetal exposure ��	�

to OPFRs. ��
�

 ����

5.6 Potential health risks originated from human internal exposure to HFRs and OPFRs ����

Health risk assessments of human exposure to HFRs and OPFRs have previously been reviewed in ����

Africa (Asante et al., 2019; Orisakwe et al., 2019), India (Awasthi et al., 2016), China (Awasthi et ����

al., 2018; Shi et al., 2018), and other regions on a global scale (Akram et al., 2019; Bakhiyi et al., ����

2018). Specifically, in informal e-waste sites, human exposure to TCIPP, TCEP, TNBP, and TPHP ����

were correlated with elevated DNA oxidative stress in e-waste sites, as the urinary concentrations ����

of BCIPP, BCEP, DBP, and DPHP were significantly increased as the concentration of 8-hydroxy-����

2′-deoxyguanosine (8-OHdG), a marker of DNA oxidative stress, increased (Lu et al., 2017). ��	�

Moreover, PBDEs and NBFRs are reported thyroid hormone (TH) disruptors (Eguchi et al., 2015; ��
�

Guo et al., 2019b; Zheng et al., 2017a, 2017b). They have strong binding affinity to thyroid-����

stimulating hormone (TSH), thyroglobulin, thyroxine-binding globulin (TBG), TH receptor α (TRα), ����
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and iodothyronine deiodinase I (ID1), and therefore could disrupt TH-regulated proteins and gene ����

expression (Guo et al., 2019b). It is also suggested that PBDEs, NBFRs (e.g., DBDPE, BTBPE, ����

BEH-TBP, etc.), and DP could exert similar disrupting effects on female follicle-stimulating ����

hormone (FSH) and male testosterone, with NBFRs showing stronger disrupting effects on human ����

sex hormones than do PBDEs (Guo et al., 2018). Furthermore, PBDEs were found to have adverse ����

effects on human semen quality measured by sperm concentration and count, sperm progressive ����

motility, and sperm viability (Yu et al., 2018). ��	�

 ��
�

Specifically, health effects of HFR exposure on fetuses and infants are of particular concern due to ����

their substantially weaker resistance and immunity (Bai et al., 2019; Li et al., 2018; Xu et al., 2015; ����

Zheng et al., 2017b). Potential health risks for pregnant women and fetuses arising from OPFR ����

(especially TPHP and TnBP) exposure in an e-waste site (Qingyuan, China) were implied by Bai et ����

al. (2019), who determined high concentrations of OPFRs in paired amniotic fluid as well as in ����

maternal urine. Meanwhile, Xu et al. (2015), along with Li et al. (2018) reported that high prenatal ����

exposure to PBDEs in e-waste recycling areas may lead to adverse physiological development in ����

fetuses, in terms of reduced body-mass index, Apgar 1 score, and head�circumference. ����

 ��	�

6 Conclusions ��
�

The evidence reviewed in this study indicates 3 main pathways of human external exposure to HFRs ����

and OPFRs in informal e-waste handling sites, i.e., inhalation, ingestion of dust and food, and ����

dermal absorption. Current evidence suggests EDIs of OPFRs via inhalation exceed those via food ����

intake and dust ingestion, and thus inhalation could be the dominant pathway of human exposure to ����

OPFRs in informal e-waste sites; while for PBDEs, NBFRs, and DPs, food consumption and indoor ����

dust ingestion are likely more important contributors. An important factor emerging from our review ����

is that human exposure to HFRs and OPFRs through dermal absorption is insufficiently well-����

understood and may well be underestimated as pathways such as dermal absorption of both ����

particulate and gaseous contaminants through air-to-skin transfer, as well as from direct skin contact ��	�

with e-waste articles, have been largely overlooked. Children, infants, and fetuses, as well as e-��
�

waste recycling workers were found to experience higher HFR and OPFR exposure than did non-����

occupationally-exposed adults inhabiting e-waste handling zones, or those living in non-e-waste-����
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impacted locations. Gender differences in human internal exposure to HFRs in informal e-waste ����

locations were reported in some studies with higher HFR concentrations in serum and hair observed ����

in females compared to males. The cause of these higher HFR concentrations in females is unclear, ����

especially in serum. ����

 ����

Temporal changes in HFR concentrations in environmental media and humans have also been ����

identified from previous studies. The evidence reviewed in this study shows increasing levels of ��	�

HFRs in indoor dust, foodstuffs, and human hair with increasing duration of e-waste handling ��
�

activity at a given site. Furthermore, PBDE concentrations in human serum and breast milk were ����

likely to increase with increasing duration of residence in informal e-waste sites. ����

 ����

Most studies about human exposure to HFRs and OPFRs through informal e-waste handling ����

activities were conducted in China, while studies in other countries or regions were limited. As the ����

import of wastes from foreign countries was banned in China at the end of 2018, other low- and ����

moderate-income countries are likely to receive more waste, and greater environmental and health ����

effects could be caused by the improper treatment of this waste. More attention should therefore be ����

paid to problems associated with informal e-waste treatment in low- and moderate-income countries ��	�

in the future. ��
�

 ����

Based on the present review, we recommend that the following research gaps should be addressed ����

urgently. Firstly, very little is known about HFR and OPFR contamination of the environment and ����

humans arising from informal e-waste activities outside China, especially in Africa where such ����

activities appear to be growing substantially. Secondly, more detailed consideration of dermal ����

absorption as a pathway of human exposure to HFRs and OPFRs to those working in and inhabiting ����

e-waste handling areas is required. Thirdly, data on human dietary intake of OPFRs of residents of ����

informal e-waste sites is a priority for investigation. Moreover, the higher body burdens of HFRs in ����

females associated with informal e-waste recycling compared to males that have been reported ��	�

require further detailed study, both to verify such findings and to elucidate their cause(s). Finally, ��
�

very little is understood about human exposure to CPs via all potential pathways as a result of ����

informal e-waste handling, and research to better understand the magnitude of such exposure and �	��
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the pathways via which it occurs is recommended. �	��
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Tables and figures �
��

 �
��

 �
��

Fig. 1: Global distribution of recent research studies reporting human exposure to HFRs and �
��

OPFRs through informal e-waste handling activities (2015-2020)�
��
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 ����

Fig. 2: Transfer of HFRs and OPFRs between various environmental media and associated human exposure pathways (Leung, 2019)����
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Table 1. Reference doses (RfD) values (ng/kg bw/day) for some HFRs and OPFRs �
	�

Compound RfD Compound RfD 

TnBP 24000 BDE-209 7000 

TCEP 22000 Octa-BDE 3000 

TCIPP 80000 Penta-BDE 2000 

TBOEP 15000 BDE-47 100 

TPHP 70000 BDE-99 100 

TDCIPP 15000 BDE-153 200 

TCP 13000 DP 5000000(1) 

BTBPE 243000 DP 2000000(2) 

TBB 20000 DP 10000(3) 

BEH-TBP 20000 ∑HBCDDs 200 

DBDPE 333333 TBBP-A 600000 

Notes: (1) chronic oral RfD; (2) dermal RfD; (3) inhalation RfDs �

�

Source: Ali et al. (2012), except United States Environmental Protection Agency (2017) for PBDEs, Wang et al. �
��

(2013) for DP, and Besis et al. (2017) for HBCDD and TBBP-A. ����

 ����

  ����
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Table 2. Concentrations of BDE-209, DBDPE, and BTBPE in indoor dust collected from ����

Qingyuan, China (ng/g) ����

sampling period 
BDE-209 DBDPE BTBPE 

references 
median  range median  range median  range 

2007 988 105-140000 63.1 13.5-1144 20 n.d.(1)-998 (Wang et al., 2010) 

2013 644-22500 146-195000 1160-26300 n.d.-181000 28-148 2.8-12700 (Zheng et al., 2015) 

2013-2014 23800 8530-152000 2720 669-15000 � n.a.(2) � n.a. (He et al., 2017) 

Notes: (1) n.d. = not detected; (2) n.a. = not available ����
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