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Abstract: Robust chemical routes towards valuable bioactive entities such as riboflavines, 

quinoxalinones and benzodiazepines are described. These make use of modern flow 

hydrogenation protocols enabling the chemoselective reduction of nitro group containing 

building blocks in order to rapidly generate the desired amine intermediates in situ. In 

order to exploit the benefits of continuous processing the individual steps were transformed 

into a telescoped flow process delivering selected benzodiazepine products on scales of  

50 mmol and 120 mmol respectively. 

Keywords: flow chemistry; hydrogenation; riboflavine; benzodiazepine; micro reactor  

 

1. Introduction 

The quest to develop efficient and economic routes towards molecules with potential biomedical 

applications continues to be one of the most challenging tasks of modern synthetic organic chemistry [1–3]. 

As such medicinal chemistry programs commonly seek to identify valuable heterocyclic core 

structures that can subsequently be diversified delivering libraries of new compounds for high 

throughput screenings. While the most recent drug candidates entering clinical trials are likely to be 

based on new scaffolds it might be surprising to learn that at least two thirds of today’s top-market 

drugs are based on venerable classical heterocyclic cores clearly indicating the value of such privileged 

structures [4–6]. 
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Even though the search for new promising lead compounds continues to be a constant within 

pharmaceutical and agrochemical research environments, the last 15 years have witnessed a true step 

change in how such structures are prepared and evaluated [7–9]. This includes the before-mentioned 

high-throughput screening efforts in order to test compounds rapidly as well as the incorporation of  

so-called enabling technologies such as microwave and flow reactors [10–16]. The latter have now 

gained widespread acceptance in the field as they typically offer improvements in efficiency and safety 

when accessing valuable chemicals on scales ranging from the initially required milligrams to 

kilograms and indeed metric ton-scale production [17–21].
 
Importantly, both industry and academia 

are driving research in these areas at an impressive rate aiming to improve the often low success rates 

of current drug development programs [22–25]. 

Research in our team over the last decade has focused on the development of new  

instrumentation [26–31] and methodologies [32–34] geared towards efficient and innovative flow 

synthesis. One key area has been the assembly and elaboration of numerous heterocyclic scaffolds and 

target molecules as required in medicinal chemistry programs [35–40]. For example, one of our recent 

research programs was directed at the synthesis of diversely functionalized pyrrolidines achieved by 

means of chemoselective hydrogenation of N-benzyl-protected 4-nitropyrrolidines which was 

successfully performed using the H-Cube™ flow system [41–43]. This small foot-print flow 

instrument conveniently and safely performs the electrolysis of water and mixes the in situ generated 

hydrogen gas with the substrate stream. Subsequent passage of the resulting mixture through a heated 

cartridge containing a heterogeneous catalyst allows for the rapid hydrogenation of various functional 

groups with residence times typically ranging from 1–5 min. We now wish to disclose our continuation 

of our earlier findings which further harnesses the many advantages of flow-based synthesis in 

generating libraries of important bioactives such as riboflavines and benzodiazepins. Riboflavine 

(vitamin B2) is the central component of the redox cofactors flavine adenine dinucleotide (FAD) and 

flavine mononucleotide (FMN), and its analogues have been reported to display anti-inflammatory, 

antihyperalgesic, anticancer and antimalarial activities [44–46]. The non-natural benzodiazepines on 

the other hand constitute of a class of molecules possessing psychoactive activity acting on the 

gamma-aminobutyric acid receptors (GABA receptors) [47–49]. Consequently, several of today’s 

widely prescribed medications such as olanzapine, alprazolam, clonazepam and diazepam contain the 

benzodiazepine pharmacophore highlighting its continued importance [50,51]. 

2. Results and Discussion 

2.1. Synthesis of Riboflavins Derivatives 

Most commonly, riboflavine analogues can be accessed by the direct condensation of  

1,2-diaminobenzene derivatives 2 and alloxane (3) [52–57]. This transformation renders the tricyclic 

riboflavines directly if performed in acidic conditions, whereas quinoxalinone derivatives are obtained 

under neutral conditions. One major drawback of this strategy, however, lies in the limited commercial 

availability and unstable nature of many 1,2-diaminobenzenes. We therefore elected to use the  

H-Cube™ flow hydrogenation system in order to prepare the required 1,2-diaminobenzene substrates 2 

in situ from low cost and easily sourced 2-nitroaniline starting materials 1.  
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To this end stock solutions of various 2-nitroanilines in methanol/ethyl acetate (1:1 by volume,  

0.1–0.25 M) were prepared and pumped into the H-Cube™ system where after mixing with the in situ 

generated hydrogen gas the stream was directed into a pre-packed cartridge containing a heterogeneous 

metal catalyst. Initial experiments established that the best results were obtained when using a 

cartridge filled with palladium on carbon (10 wt %). Passing the solution of substrate through this 

cartridge maintained at slightly elevated temperature (45 °C) delivered a colourless product  

stream within a residence time of 4–6 min. While this colour change conveniently served as an 

indication of the complete reduction of the typically yellow 2-nitroaniline starting materials, it was 

observed that this solution would turn yellow then to brown upon standing, correlating to slow  

re-oxidation/decomposition of these unstable intermediates. For this reason the 1,2-diaminobenzene 

intermediates 2 were not isolated, but rather collected in a stirred vial containing alloxane (3) 

(equimolar concentration 0.1–0.25 M) dissolved in methanol containing HCl (5 mol %, rt) to afford the 

desired riboflavine adducts (4). It was found that the final cyclocondensation was best performed in 

batch at ambient temperature allowing for the isolation of the precipitated products in good yields and 

excellent purity (Scheme 1). 

Scheme 1. Riboflavine analogues prepared. 

  

a PtO2 used instead of Pd/C. b from 3,5-dibromo-1-nitro-2-aminobenzene. * single regioisomer. 

During our study we found that using a Pd/C catalyst cartridge reliably reduced the 2-nitroaniline 

inputs, however, in case of substrates containing sensitive chloro- or bromo-substituents concomitant 

dehalogenation was observed. However, this could be avoided by substituting the Pd/C catalyst for 

PtO2 allowing access to the riboflavine analogues functionalized by chloro and bromo groups which 

are valuable materials for further elaboration using transition metal coupling chemistries. 

In addition to this series of riboflavines we also decided to study the synthesis of the related 

quinoxalinone structures 13 which are obtained when treating the in situ generated  

1,2-diaminobenzenes with alloxane under neutral conditions. The desired structures were again 

isolated in good to excellent yields using the H-Cube™ in combination with Pd/C or PtO2 as catalysts 

in the first step (Scheme 2). These materials were extremely polar adducts which were difficult to 
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isolate using standard chromatographic methods, however, a slight modification of the reaction solvent 

system (3:1 EtOAc/MeOH) furnished the desired products in high isolated yield. 

As expected, regioisomeric products were obtained in both series when non-symmetrical starting 

materials were used. The ratio of the regioisomers was strongly dependent upon the specific 

substitution pattern mainly arising from electronic differentiation of the 1,2-dinitrogen functionality 

biasing the initial nucleophilic attack on the alloxane (3). As these mixtures could not be separated by 

column chromatography the combined yield and the corresponding ratio is reported for each pairing. 

Taking an isolated mixture of compound (13) and subjecting it to the acidic conditions used to form 

the equivalent cyclised structure (4) gave a very slow transformation to the desired material (6 days, 

45% conversion). Heating the reaction mixture aided solubility and increased the rate of the 

transformation as did adding polar solvents such as DMSO and DMF. In each case the resulting 

regioisomeric ratio was directly translated from the starting material (13) into the regioisomeric 

composition of compound (4). 

Scheme 2. Quinoxalinone analogues prepared. 

 
a PtO2 used instead of Pd/C. b from 3,5-dibromo-1-nitro-2-aminobenzene. * from regioisomeric substrates. 

2.2. Synthesis of Dibenzodiazepine Structures 

Despite the significant pharmacological potential of various dibenzodiazepine scaffolds very little 

progress has been made towards developing improved synthetic procedures since the pioneering 

studies of Schmutz et al. in the early 1960s [58–60]. In part this might be due to the now well-known 

side-effects such as long-term tolerance and dependence symptoms of the related benzodiazepine 

structures [61,62]. However, given the growing demand for medications treating neurological 

disorders one can expect a renewed interest into these structures, especially if compounds with more 
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desirable long-term profiles can be identified. Furthermore, recent reports have started to reveal the 

binding mode of benzodiazepines within the GABAA receptor and have consequently stimulated the 

synthesis and testing of new analogues [63]. Crucial for further advancement will be the availability of 

robust and efficient methodology delivering new sets of analogues based on this classical scaffold. For 

this reason we decided to establish a concise route combining a SNAr reaction to first build a 

nitrodiarylamine intermediate 25, which upon reduction of the pendant nitro group would furnish an 

amine, which subsequently undergoes a cyclodehydration reaction affording the desired dibenzodiazepine 

scaffold (Scheme 3). This process is particular desirable with respect to its atom- and step-economy.  

Scheme 3. Synthetic route for the synthesis of dibenzodiazepines. 

 

We initiated our studies by subjecting several 2-aminobenzophenones 24 to SNAr reactions with  

2-fluoronitroarenes 23 in the presence of LiHMDS as a base. It was discovered that microwave heating 

effectively and conveniently generated the desired products 25 in high yields within short reaction 

times. Following aqueous work-up these diarylamine intermediates were redissolved in acetonitrile or 

a mixture of CH2Cl2/MeOH (depending on solubility) and passed through an H-Cube™ flow system 

operated at slightly elevated temperature (60 °C) in order to accomplish full conversion within ~5 min 

residence time. Based on the previously observed benefits of using PtO2 instead of Pd/C as catalyst 

within the flow cartridges we decided to use this catalyst throughout this study. Anhydrous MgSO4 

was placed in-line using a packed glass Omnifit column to assist in the final cyclodehydration process. 

The desired dibenzodiazepines were typically isolated in high yield following solvent evaporation and 

chromatographic purification (Table 1). 

However, the initial batch microwave SNAr reaction significantly restricted our ability to easily 

scale up the sequence. This was particularly frustrating as the subsequent flow hydrogenation process 

was an essentially quantitative transformation completed in a short residence time. Consequently, we 

wished to establish a more direct and streamlined delivery of material from the SNAr step to create a 

fully integrated multi-step process. 
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Table 1. Dibenzodiazepine derivatives prepared. 

Entry 

 

Dibenzodiazepine 

Product 

Step 1: 

Time/min 

Step 2:  

Solvent 
Yield 

1 
 

60 a,b MeCN 65% 

2 
 

30 MeCN 66% 

3 

 
30 CH2Cl2/MeOH 

(3:1) 

72% 

4 
 

30 MeCN 59% 

5 
 

30 a MeCN 70% 

6 
 

30 MeCN 67% 

7 

 
30 a CH2Cl2/MeOH 

(3:1) 

58% 

8 
 

60 MeCN 43% 

9 

 
150 CH2Cl2/MeOH 

(3:1) 

51% 

10 

 
90 CH2Cl2/MeOH 

(5:1) 

37% 

11 

 
90 a CH2Cl2/MeOH 

(3:1) 

48% 

a 2 equiv. of nitrobenzene used. b KHMDS in toluene was used. 

From initial base screening we had also identified that KO
t
Bu and n-BuLi were effective for the 

SNAr transformation. Therefore, in order to create a potentially continuous process we elected to use 

stock solutions comprising of 1.6 M n-BuLi in hexanes (channel A, Scheme 4) and 0.3 and 0.25 M 

solutions of 2-fluoronitroarene (23; channel C) and 2-aminobenzophenone (24; channel B) respectively 

in 3-methyltetrahydrofuran (3-MeTHF). A simple flow reactor was assembled using two low volume 

PTFE pre-cooling loops (1 mL, cooled to 0 °C - channels A and B) linked by a T-mixer to a short tube 

reactor (0.10 mL, rt) in which the rapid deprotonation occurs. A second T-mixer successively unites 

the third flow stream containing the electrophile (channel C) before the reaction enters a 52 mL heated 
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reactor coil (115 °C) to promote the substitution step. Optimised flow rates of 0.1 mL/min-channel A, 

0.5 mL/min-channel B and 0.5 mL/min-channel C, gives corresponding residence times of 10 s and 

47.3 min in the two reactor zones. The downstream work-up and purification was performed by the 

introduction of an aqueous solution of NaHCO3 (1 M, 2.5 mL/min) mixed within a 2.5 mL Uniqsis 

mixer chip and directed into a 10 mL PTFE coil reactor where the mixture developed into plug flow. 

The resultant biphasic feed was collected into a continuous separation tank (70 mL Biotage Universal 

Phase Separator-Cat No. 120-1930-V). The aqueous phase was constantly removed using a positioned 

side arm run off to maintain a fixed liquid volume (~45 mL). The separated organic layer was dried by 

passage through an exchangeable column of oven dried alumina (120 g) then diluted (1:1) with a 

MeOH make-up stream prior to entering the H-cube MIDI™ hydrogenator (5 bar, 45 °C, 2.2 mL/min, 

116 mm × 9.2 mm, PtO2). The reaction step within the H-cube™ was started with a delay of 90 min 

relative to the first reactor; a buffering reservoir was placed between the two stages to compensate for 

the volume. Solvent evaporation of the processed solutions allowed isolation of the crude materials 

(entry 3 and 8 above; 27c = 50 mmol scale, crude 13.7 g, ~83% purity: 27h = 120 mmol scale, crude 

38.1 g, ~69% purity) in comparable purities and isolated yields (27c 68% and 27h 51%) to the original 

two-step process. Isolation was achieved by loading the crude material onto samplet cartridges (10 g) 

followed by chromatography using a Biotage SP4 instrument. 

Scheme 4. Continuous flow synthesis of dibenzodiazepines.  

 

A particularly notable feature of these dibenzodiazepine structures is the prevalence of different 

tautomers A and B that form in a pH-dependent manner (Scheme 5). Based on our observations we 

conclude that tautomer A is the predominant species formed during the cyclodehydration event, which 

interconverts into tautomer B upon exposure to acidic media such as the silica gel used in the 

purification. In order to prove this assumption, mixtures of both tautomers were dissolved in formic 

acid (0.15 M, in MeOH/EtOAc, 1:1) leading over the course of 30 min to full conversion into tautomer B 

as evidenced by the results of several single crystal X-ray diffraction experiments. Moreover, these  

X-ray structures reveal the distinct non-planar shape of these molecules due to the steric impact of the 

attached aryl substituent resulting in an unusual three-dimensional orientation of these 

dibenzodiazepine derivatives. 
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Scheme 5. Tautomer interconversion and X-ray crystal structures of compounds 27b, 27d 

and 27e (nitrogen: blue; chlorine: green). 

 

3. Experimental  

Full experimental details and spectroscopic characterization data is given is the proceeding section:  

3.1. General Information 

Unless otherwise specified, reagents were obtained from commercial sources and used without 

further purification. Solvents were obtained from Fisher Scientific and distilled before use.  
1
H-NMR spectra were recorded on a Bruker Avance DPX-400, DPX-500, or DPX-600 spectrometer 

with the residual solvent peak as the internal reference (CDCl3 = 7.26 ppm, d6-DMSO = 2.50 ppm). 
13

C-NMR spectra were recorded on the same spectrometers with the central resonance of the solvent 

peak as the internal reference (CDCl3 = 77.16 ppm, d6-DMSO = 39.52 ppm). DEPT135, COSY and 

HMQC experiments were used to aid structural determination and spectral assignment.  

IR spectra were recorded neat on a PerkinElmer Spectrum One FTIR spectrometer with Universal 

ATR sampling accessories. Letters in parentheses refer to the relative absorbance of the peak: w = weak 

(<40% of the most intense peak), m = medium (40%–70% of the most intense peak), s = strong (>70% of 

the most intense peak). 

High resolution mass spectra (HRMS) were recorded on a Waters Micromass LCT Premier Q-TOF 

spectrometer by electrospray ionisation (ESI) or an ABI/MDS Sciex Q-STAR Pulsar. The mass 

reported is containing the most abundant isotopes. Limit: ±5 ppm. LC-MS analysis was performed on 

an Agilent HP 1100 series chromatograph (Mercury Luna 3μ C18 (2) column) attached to a Waters 

ZQ2000 mass spectrometer with ESCi ionisation source in ESI mode. 

3.2. General Procedure for the Hydrogenation Reactions in Flow Using the H-Cube
®

 

A solution of the nitroaniline (1 mmol, 0.1–0.25 M, MeOH/EtOAc, 1:1) was passed through the  

H-Cube
®
, which was equipped with a cartridge filled with the corresponding Pd/C or PtO2/C catalyst. 

Extra back pressure regulators were added to the H-Cube
®

 set-up, with a pressure of 100 psi (6.9 bar) 

being applied before the solution entered the H-Cube
®

 and a pressure of 250 psi (17.2 bar) applied to 

the exiting solution. The nitroanilines were pumped at different temperatures and flow rates depending 
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on the substrate using full H2 mode. The exiting solutions were concentrated to determine the reaction 

conversion by 
1
H-NMR analysis and used subsequently due to the instability of the diamines. The 

catalyst cartridge was exchanged approximately every 8 runs.  

3.3. General Procedure for the Formation of the Riboflavine Analogues 5–12 

The diamines generated by the hydrogenation process in flow were mixed with alloxane monohydrate 

(0.160 g, 1 mmol) and hydrogen chloride in methanol (1 mL of approx. 1.25 M concentration) and left to 

stir at room temperature overnight. The product was then filtered and the solid product was dried in vacuo. 

7,8-Dimethylbenzo[g]pteridine-2,4(3H,10H)-dione (5). Prepared from 4,5-dimethyl-2-nitroaniline 

(0.166 g, 1 mmol) to give a yellow solid (0.147 g, 61% yield). 
1
H-NMR (500 MHz, d6-DMSO):  

δ/ppm = 11.82 (1H, d, J = 1.8 Hz, NH), 11.65 (1H, s, NH), 7.90 (s, 1H), 7.69 (s, 1H), 3.15 (s, 6H, 2 × 

CH3); 
13

C-NMR (125 MHz, d6-DMSO): δ/ppm = 160.7 (C), 150.1 (C), 146.5 (C), 144.7 (C), 141.7 (C), 

139.0 (C), 138.4 (C), 130.3 (C), 128.8 (CH), 125.9 (CH), 55.0 (CH3), 48.6 (CH3). IR (neat) /cm
−1 

= 

3445.6 (w), 3187.7 (w), 3145.6 (w), 3073.2 (w), 2985.0 (w), 2951.7 (w), 2848.1 (w), 1734.3 (m), 

1693.0 (s), 1629.8 (w), 1587.9 (m), 1578.0 (m), 1486.7 (w), 1441.5 (w), 1423.8 (w), 1386.7 (w), 

1363.8 (m), 1349.3 (m), 1285.7 (s), 1221.3 (w), 1192.6 (w), 1143.9 (w), 1097.6 (w), 1035.0 (m), 

1023.5 (w), 1001.9 (w), 911.5 (w), 882.9 (m), 816.2 (m), 797.9 (w), 770.5 (w), 754.5 (m), 736.2 (w), 

683.9 (w), 661.9 (w). LC-MS: Rt = 4.57 min; HRMS (ESI): m/z calculated for C12H9N4O2 [M+H
+
]:

 

213.0731; found 241.0732.  

Benzo[g]pteridine-2,4(3H,10H)-dione (6). Prepared from 2-nitroaniline (0.138 g, 1 mmol) to give a pale 

green solid (0.131 g, 61% yield). 
1
H-NMR (500 MHz, d6-DMSO): δ/ppm = 11.94 (d, J = 1.6 Hz, 1H, 

NH), 11.75 (s, 1H, NH), 8.16 (d, J = 8.2 Hz, 1H), 7.92 (m, 2H, 2 and 3), 7.77 (m, 1H); 
13

C-NMR  

(125 MHz, d6-DMSO): δ/ppm = 160.5 (C), 150.2 (C), 146.9 (C), 142.7 (C), 139.3 (C), 133.4 (CH), 

131.8 (C), 130.2 (CH), 128.5 (CH), 127.0 (CH). IR (neat) /cm
−1

: 3173.4 (w, br), 3084.4 (w, br), 

28.43.1 (w, br), 1813.8 (w), 1786.4 (w), 1733.6 (m), 1687.9 (s), 1618.5 (w), 1582.9 (m), 1505.4 (w), 

1485.5 (w), 1447.4 (m), 1390.4 (m), 1364.0 (m), 1334.4 (m), 1316.1 (m), 1271.4 (s), 1248.8 (m), 

1212.6 (s), 1153.6 (w), 1144.9 (w), 1034.9 (w), 1015.0 (w), 989.7 (w), 915.6 (w), 866.9 (w), 811.8 

(w), 763.6 (s, br), 705.1 (m), 677.8 (m). LC-MS: Rt 1.82 min; HRMS (ESI): m/z calculated for 

C10H5N4O2 [M+H
+
]: 213.0418; found 213.0411. 

7-Methylbenzo[g]pteridine-2,4(3H,10H)-dione and 8-methylbenzo[g]pteridine-2,4(3H,10H)-dione (7). 

Prepared from 4-methyl-2-nitroaniline (0.152 g, 1 mmol) to give a yellow solid, with two regioisomers 

found in a 4:3 ratio (0.212 g, 96% yield). 
1
H-NMR gave broad peaks and not all quaternary centres 

were observed in the 
13

C-NMR. 
1
H-NMR (500 MHz, d6-DMSO): δ/ppm = 12.99 (s, 1H, NH), 11.15 (s, 

1H, NH), 7.68 (d, br, J = 18 Hz, 2H), 7.51 (d, J = 9 Hz, 1H), 7.27 (dd, J = 6.5 Hz, 20.3 Hz, 2H), 7.15 

(s, 1H), 2.50 (m, 3H), 2.49 (m, 3H). To separate broad peaks: 
1
H-NMR (400 MHz, d6-DMSO + 3 

drops TFA): δ/ppm = 8.03 (1H from major regioisomer, d, J = 8.5 Hz, H3), 7.96 (1H from minor 

regioisomer, s, H1), 7.71 (1H from minor regioisomer, dd, J = 8.4 Hz, 1.9 Hz, H2), 7.48 (1H from 

major regioisomer, dd, J = 8.9 Hz, 1.3 Hz, H2), 7.41 (1H from minor regioisomer, d, J = 8.4 Hz, H3), 

7.27 (1H from major regioisomer, s, H1) 2.62 (3H from major regioisomer, s, CH3), 2.56 (3H from 
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minor regioisomer, s, CH3); 
13

C-NMR (125 MHz, d6-DMSO): δ/ppm = 163.7 (C), 154.5 (C), 153.2 

(C), 143.7 (C), 134.1 (CH), 132.7 (C), 131.4 (C), 130.5 (C), 129.8 (CH), 129.5 (CH), 129.0 (C), 125.9 

(CH), 115.5 (CH), 115.3 (CH), 21.6 (CH3), 20.4 (CH3). IR (neat) /cm
−1

: 3395.5 (w), 3134.2 (w, br), 

1724.7 (s), 1693.2 (s), 1656.2 (m), 1626.1 (m), 1583.3 (m), 1533.1 (w), 1509.2 (m), 1465.3 (w), 

1371.3 (s), 1290.6 (w), 1278.8 (w), 1248.7 (w), 1199.4 (w), 1185.1 (w), 1146.0 (w), 1116.6 (w), 

1025.9 (w), 961.8 (w), 914.6 (w), 883.2 (w), 860.5 (w), 825.8 (s), 810.3 (s), 758.4 (w), 719.8 (w), 

697.7 (w), 681.6 (w). LC-MS: Rt 3.49 min; HRMS (ESI): m/z calculated for C11H9N4O3 [M+H
+
]: 

227.0574; found 227.0571. 

7-Methylbenzo[g]pteridine-2,4(3H,10H)-dione and 8-methyl-benzo[g]pteridine-2,4(3H,10H)-dione 

(7). Prepared from 5-methyl-2-nitroaniline (0.152 g, 1 mmol) to give a yellow solid, with two 

regioisomers found in a 4:3 ratio (0.140 g, 61% yield). This was indicated by 
1
H-NMR to be identical 

to tne above compounds 7. 

7-Methoxybenzo[g]pteridine-2,4(3H,10H)-dione and 8-methoxybenzo[g]pteridine-2,4(3H,10H)-dione (8). 

Prepared from 4-methoxy-2-nitroaniline (0.206 g, 1 mmol) to give an orange solid, with two 

regioisomers found in a 3:2 ratio (0.1043 g, 43% yield). 
1
H-NMR (500 MHz, d6-DMSO): δ/ppm = 11.86 

(1H from minor regioisomer, d, J = 1.7 Hz, NH), 11.82 (1H from major regioisomer, d, J = 1.7 Hz, 

NH), 11.69 (1H from major regioisomer, s, NH), 11.66 (1H from minor regioisomer, s, NH), 8.02 (1H 

from minor regioisomer, d, J = 9.2 Hz, H3), 7.83 (1H from major isomer, d, J = 9.2 Hz, H3), 7.59 (1H 

from major regioisomer, dd, J = 9.2 Hz, 2.7 Hz, H2), 7.54 (1H from major regioisomer, d, J = 2.8 Hz, 

H1), 7.40 (1H from minor regioisomer, dd, J = 9.3 Hz, 2.3 Hz, H2), 7.22 (1H from minor regioisomer, 

d, J = 2.7 Hz, H1), 3.97 (3H from minor regioisomer, s, CH3), 3.80 (3H from major regioisomer, s, 

CH3); 
13

C-NMR (125 MHz, d6-DMSO): δ/ppm = 163.25 (C), 160.7 (C), 160.6 (C), 159.1 (C), 150.3 

(C), 150.1 (C), 147.2 (C), 145.5 (C), 145.1 (C), 145.1 (C), 140.8 (C), 138.8 (C), 135.6 (C), 131.5 (CH), 

130.9 (C), 128.4 (C), 128.0 (CH), 126.9 (CH), 107.5 (CH), 104.9 (CH), 56.3 (CH3), 56.0 (CH3). IR 

(neat) /cm
−1

: 3258.9 (w), 3071.0 (w, br), 2851.2 (w), 1726.3 (m), 1694.1 (s), 1621.3 (w), 1556.8 (m), 

1509.3 (w), 1458.9 (w), 1439.0 (m), 1399.2 (w), 1354.6 (s), 1340.8 (m), 1330.1(m), 1314.0 (w), 

1233.5 (m), 1212.9 (s), 1158.8 (w), 1142.7 (w), 1120.4 (w), 1008.4 (m), 960.0 (w), 877.6 (w), 850.7 

(m), 794.2 (m), 763.1 (m), 749.2 (m), 704.8 (w), 659.4 (w). LC-MS: Rt 3.42 min; HRMS (ESI): m/z 

calculated for C11H7N4O3 [M+H
+
]: 243.0524; found 243.0527. 

7-Fluorobenzo[g]pteridine-2,4(3H,10H)-dione and 8-Fluorobenzo[g]pteridine-2,4(3H,10H)-dione (9). 

Prepared from 4-fluoro-2-nitroaniline (0.106 g, 1 mmol) to give a green solid with two regioisomers 

found in a 5:3 ratio (0.1678 g, 73% yield). 
1
H-NMR (500 MHz, d6-DMSO): δ/ppm = 12.04 (1H from 

minor regioisomer, d, J = 1.8 Hz, NH), 11.98 (1H from major regioisomer, d, J = 1.8 Hz, NH), 11.81 

(1H from each regioisomer, br s, 2 × NH), 8.27 (1H from minor regioisomer, dd, J = 9.2 Hz, 6.1 Hz, 

H3), 8.02–7.99 (2H from major regioisomer, m, H1 and H2), 7.91–7.87 (1H from major regioisomer, 

m, H3), 7.74–7.69 (2H from minor regioisomer, m, H1 and H2); 
13

C-NMR (125 MHz, d6-DMSO): 

δ/ppm = 164.4 (C from minor regioisomer, d, J = 250.0 Hz, C-F), 164.4 (C from major regioisomer, d, 

J = 37.5 Hz, C-F), 160.4 (C), 160.3 (C), 150.1 (C, major regioisomer), 150.0 (C, minor regioisomer), 

147.5 (C), 146.7 (C, d, J = 2.1 Hz), 143.9 (C from minor regioisomer, d, J = 14.4 Hz), 140.0 (C from 
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major regioisomer), 139.5 (C from major regioisomer, d, J = 13.1 Hz), 136.6 (C), 133.0 (CH from 

minor regioisomer, d, J = 11.2 Hz, C3), 132.5 (C from major regioisomer), 131.3 (C from minor 

regioisomer, d, J = 3.0 Hz), 129.3 (CH from major regioisomer, d, J = 9.9 Hz, C3), 123.5 (CH from 

major regioisomer, d, J = 18.5 Hz, C2), 118.8 (CH from minor regioisomer, d, J = 26.2 Hz, C2), 113.3 

(CH from major regioisomer, d, J = 21.5 Hz, C1), 110.7 (CH from minor regioisomer, d, J = 22.0 Hz, 

C1). IR (neat) /cm
−1

: 3182.7 (w), 3086.6 (w, br), 2845.9 (w), 1733.7 (m), 1691.9 (s), 1626.7 (m), 

1583.9 (m), 1571.6 (m), 1510.4 (m), 1482.0 (w), 1455.3 (m), 1398.4 (w), 1354.5 (m), 1334.9 (s), 

1298.6 (w), 1278.3 (s), 1243.1 (w), 1213.1 (s), 1157.4 (w), 1139.3 (w), 1108.9 (w), 1035.9 (w), 975.4 

(w), 856.9 (s), 835.3 (s), 808.0 (m), 767.4 (m), 753.1 (s), 703.3 (w), 684.0 (w), 663.0 (m). LC-MS: Rt 

2.85 min (mass peak of 233), another weaker peak seen at 3.45 min; HRMS (ESI): m/z calculated for 

C10H4N4O2F, [M+H
+
]: 231.0324; found 231.0323. 

7-(Trifluoromethyl)benzo[g]pteridine-2,4(3H,10H)-dione or 8-(trifluoromethyl)benzo[g]pteridine-

2,4(3H,10H)-dione (10). Prepared from 2-nitro-5-(trifluoromethyl)-aniline (0.206 g, 1 mmol) to give a 

pale yellow solid, one regioisomer was cleanly isolated (0.059 g, 21% yield). 
1
H-NMR (500 MHz,  

d6-DMSO): δ/ppm = 12.11 (br s, 1H, NH), 11.87 (br s, 1H, NH), 8.35 (d, J = 8.7 Hz, H3), 8.21 (d,  

J = 0.6 Hz, H1), 7.98 (dd, J = 8.7 Hz, 2.0 Hz, H2); 
13

C-NMR (125 MHz, d6-DMSO): δ/ppm = 160.1 

(C), 150.1 (C), 148.0 (C), 141.7 (C), 140.2 (C), 134.4 (C) 132.3 (C-CF3) 132.0 (CH), 124.7 (CH), 

124.0 (CF3), 123.4 (CH). IR (neat) /cm
−1

: 3456.0 (w), 3054.8 (w, br), 2898.1 (w), 2825.2 (w), 1733.4 

(w), 1689.9 (s), 1631.4 (w), 1584.7 (w), 1507.7 (w), 1489.4 (w), 1454.8 (w), 1394.7 (m), 1367.9 (w), 

1336.9 (w), 1318.3 (m), 1290.0 (s), 1266.5 (m), 1257.6 (m), 1244.0 (m), 1205.2 (m), 1166.9 (s), 

1158.8 (s), 1136.1 (s), 1111.1 (m), 1086.1 (w), 1031.0 (w), 997.5 (m), 941.0 (w), 908.4 (w) 900.3 (w), 

859.9 (s), 823.3 (w) 804.2 (m), 774.2 (w), 755.8 (w), 710.3 (s), 678.7 (w), 655.8 (w). LC-MS: Rt 3.85 min; 

HRMS (ESI): m/z calculated for C11H4F3N4O2 [M+H
+
]: 281.0292; found 281.0287. 

8-Chlorobenzo[g]pteridine-2,4(3H,10H)-dione and 7-chloro-benzo[g]pteridine-2,4(3H,10H)-dione (11). 

Prepared from 4-chloro-2-nitroaniline (0.172 g, 1 mmol) to give a pale yellow solid, with two 

regioisomers found in a 5:1 ratio (0.121 g, 49% yield). 
1
H-NMR gave broad peaks. 

1
H-NMR (500 MHz, 

d6-DMSO): δ/ppm = 13.09 (1H from major regioisomer, br s, NH), 12.61 (1H from minor regioisomer, 

br s, NH), 10.98 (1H from major regioisomer, br s, NH), 8.25 (1H from minor regioisomer, s), 8.17 

(1H from minor regioisomer, d, J = 9.0 Hz), 7.97–7.73 (4H, three from major regioisomer, one from 

minor regioisomer, br m). To separate broad peaks: 
1
H-NMR (400 MHz, d6-DMSO + 3 drops TFA): 

δ/ppm = 8.23 (1H from minor regioisomer, d, J = 1.5Hz, H1), 8.15 (1H from minor regioisomer, d,  

J = 9.0 Hz, H3), 7.93 (1H from major regioisomer, dd, J = 9.0 Hz, 2.1 Hz, H2), 7.74 (1H from minor 

regioisomer, dd, J = 9.0 Hz, 2.3 Hz, H2), 7.81 (1H from major regioisomer, m, H3), 6.70 (1H from major 

regioisomer, m, H1); 
13

C-NMR (125 MHz, d6-DMSO): δ/ppm = 160.3 (C), 153.1 (C), 150.1 (C), 147.6 

(C), 147.2 (C), 143.1 (C), 141.4 (C), 141.4 (C), 139.4 (C), 137.8 (C), 133.7 (CH), 132.8 (C), 132.3 (C), 

132.0 (CH), 131.7 (C), 131.4 (C), 128.6 (CH), 125.7 (CH), 117.5 (CH), 115.1 (CH). IR (neat) /cm
−1

: 

3149.8 (w), 3085.3 (w, br), 2852.0 (w), 1728.1 (m), 1693.9 (s), 1661.4 (m), 1610.7 (m), 1578.6 (m), 

1534.2 (w), 1490.7 (m), 1457.6 (w), 1365.9 (m), 1354.6 (s), 1335.6 (m), 1292.9 (m), 1274.7 (m), 

1237.1 (w), 1190.2 (w), 1173.0 (w), 1145.2 (w), 1160.2 (w), 1082.7 (w), 1029.3 (w), 938.3 (w), 912.9 
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(w), 876.5 (w), 826.9 (m), 807.5 (m), 751.1 (w), 738.5 (w), 682.0 (w), 666.8 (w). LC-MS: Rt 3.60 min; 

HRMS (ESI): m/z calculated for C10H4N4O2Cl [M+H
+
]: 247.0028; found 247.0039. 

6,8-Dibromobenzo[g]pteridine-2,4(3H,10H)-dione or 7,9-dibromobenzo[g]pteridine-2,4(3H,10H)-

dione (12). Prepared from 2,4-dibromo-6-nitroaniline (0.294 g, 1 mmol) to give a pale green solid, one 

regioisomer was cleanly isolated (0.096 g, 26% yield). 
1
H-NMR (500 Hz, d6-DMSO): δ/ppm = 12.21 

(s, 1H, NH), 11.85 (s, 1H, NH), 8.45 (d, J = 2.1 Hz, 1H), 8.43 (d, J = 2.1 Hz, 1H); 
13

C-NMR (125 MHz, 

d6-DMSO): δ/ppm = 159.9 (C), 150.0 (C), 147.8 (C), 139.9 (C), 139.4 (C), 138.2 (CH), 133.6 (C), 

131.9 (CH), 122.0 (C), 120.2 (C). IR (neat) /cm
−1

: 3491.0 (w), 3183.1 (w) 3072.6 (w), 2849.1 (w), 

1704.0 (s), 1603.2 (m), 1575.7 (w), 1558.3 (w), 1497.1 (w), 1468.2 (m), 1445.5 (m), 1386.8 (m), 

1347.8 (m), 1319.7 (w), 1286.5 (s), 1210.7 (w), 1181.7 (w), 1136.6 (w), 1076.6 (w), 1028.2 (m), 1010.7 

(m), 949.6 (m), 869.9 (m), 833.0 (m), 814.7 (m), 750.9 (w), 732.6 (w), 710.1 (w), 670.6 (w). LC-MS: Rt 

4.02 min; HRMS (ESI): m/z calculated for C10H3N4O2Br2 [M+H
+
]: 368.8642; found 368.8628. 

3.4. General Procedure for the Formation of the Dehydroquinoxalines Analogues 14–22 

The diamines generated by the hydrogenation process in flow were mixed with alloxane monohydrate 

(0.160 g, 1 mmol) and left to stir at room temperature overnight. The product was then filtered and the 

solid product was dried in vacuo. 

N-Carbamoyl-6,7-dimethyl-3-oxo-3,4-dihydroquinoxaline-2-carboxamide (14). Prepared from  

4,5-dimethyl-2-nitroaniline (0.166 g, 1 mmol) to give a dull yellow solid (0.212 g, 84% yield).  
1
H-NMR (500 MHz, d6-DMSO): δ/ppm = 12.97 (br s, 1H, NH), 11.21 (br s, 1H, NH), 7.74 (br s, 1H, 

NH from NH2), 7.69–7.65 (br m, 2H), 7.54 (br s, 1H, NH from NH2). To separate broad peaks:  
1
H-NMR (400 MHz, d6-DMSO + 3 drops TFA): δ/ppm = 6.55 (s, 1H), 6.45 (s, 1H), 5.72 (s, 2H from 

NH2); 
13

C-NMR (125 MHz, d6-DMSO): δ/ppm = 159.6 (C), 155.2 (C), 153.2 (C), 142.0 (C), 141.9 

(C), 131.2 (C), 128.8 (C), 123.4 (C), 115.8 (CH), 115.6 (CH), 20.2 (CH3), 19.0 (CH3). IR (neat) 

/cm
−1

: 3377.1 (m), 3148.1 (w, br), 2823.3 (w, br), 1690.1 (s), 1645.9 (m), 1570.3 (s), 1487.5 (s), 

1446.3 (s), 1390.6 (s), 1390.6 (s), 1367.5 (s), 1331.5 (m), 1286.8 (w), 1253.5 (m), 1196.5 (m), 1167.9 

(s), 1111.9 (m), 1032.3 (w), 1011.4 (w), 967.3 (w), 919.9 (w), 860.8 (w), 820.5 (w), 801.8 (s), 752.8 

(w), 741.6 (w), 683.7 (m). LC-MS: Rt 3.69 min; HRMS (ESI): m/z calculated for C12H11N4O3 [M+H
+
]: 

259.0837; found 259.0841. 

N-Carbamoyl-3-oxo-3,4-dihydroquinoxaline-2-carboxamide (15). Prepared from 2-nitroaniline (0.138 g,  

1 mmol) to give a light green solid (0.228 g, 98% yield). 
1
H-NMR gave broad peaks. 

1
H-NMR (500 MHz, 

d6-DMSO): δ/ppm = 13.03 (s, 1H, NH), 11.09 (s, 1H, NH), 7.92–7.37 (m br, 6H, NH2 + 4CH). To 

separate broad peaks: 
1
H-NMR (400 MHz, d6-DMSO + 3 drops TFA): δ/ppm = 8.97 (br s, 1H, NH2), 

7.37 (br s, 1H, NH2), 6.83 (m, 2H), 6.68 (m, 2H); 
13

C-NMR (125 MHz, d6-DMSO): δ/ppm = 163.8 

(C), 154.1 (C), 153.2 (C), 149.3 (C), 132.6 (CH), 131.3 (C), 129.7 (CH), 124.3 (CH), 124.0 (C), 115.8 

(CH). IR (neat) /cm
−1

: 3366.5 (w), 3152.2 (w, br), 2969.0, (w), 2813.8 (w, br), 1718.3 (m), 1685.2 

(s), 1643.2 (m), 1609.6 (w), 1571.0 (m), 1495.8 (m), 1433.8 (m), 1391.0 (s), 1360.1 (m), 1336.6 (w), 

1293.6 (w), 1270.1 (w), 1249.6 (w), 1232.8 (w), 1183.2 (w), 1146.8 (m), 1100.7 (m), 1049.0 (w), 
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969.8 (w), 929.1 (w), 912.1 (m), 796.1 (m), 764.1 (s), 723.9 (w), 680.4 (w). LC-MS: Rt 2.63 min; 

HRMS (ESI): m/z calculated for C10H7N4O3 [M+H
+
]: 213.0524; found 231.0527. 

N-Carbamoyl-7-methyl-3-oxo-3,4-dihydroquinoxaline-2-carboxamide and N-carbamoyl-8-methyl-3-

oxo-3,4-dihydroquinoxaline-2-carboxamide (16). Prepared from 4-methyl-2-nitroaniline (0.152 g,  

1 mmol) to give a bright yellow solid, with two regioisomers in a 3:2 ratio (0.187 g, 76% yield).  
1
H-NMR (500 MHz, d6-DMSO): δ/ppm = 11.86 (1H from minor regioisomer, d, J = 1.7 Hz, NH), 

11.84 (1H from major regioisomer, d, J = 1.7 Hz, NH) 11.68 (1H from major regioisomer, s, NH), 

11.69 (1H from minor regioisomer, s, NH) , 8.00 (1H from minor regioisomer, d, J = 8.6 Hz, H1) 7.89 

(1H from major regioisomer, s, H3), 7.78 (1H from major regioisomer, d, J = 8.6 Hz, H1), 7.72 (1H 

from major isomer, dd, J = 8.6 and 1.9 Hz, H2), 7.66 (1H from minor regioisomer, s, H3), 7.57 (1H 

from minor regioisomer, dd, J = 8.6 and 1.9 Hz, H2), 2.54 (3H from minor regioisomer, s, CH3), 2.48 

(3H from major regioisomer, m, CH3). 
13

C-NMR (125 MHz, d6-DMSO): δ/ppm = 160.6 (C), 160.6 (C), 

150.2 (C), 150.1 (C), 147.0 (C), 146.4 (C), 144.3 (C), 142.8 (C), 141.1 (C), 139.4 (C), 138.6 (C), 137.9 

(C), 135.7 (CH), 131.3 (C), 130.8 (CH), 130.6 (C), 129.7 (CH), 128.7 (CH), 126.6 (CH), 125.7 (CH), 

21.7 (CH3), 21.1 (CH3). IR (neat) /cm
−1

: 3171.9 (w), 3075.1 (w), 2990.5 (w),2852.3 (w), 1726.5 (m), 

1701.1 (s), 1622.7 (w), 1581.9 (m), 1564.7 (w), 1511.5 (w), 1476.0 (w), 1446.6 (w), 1392.9 (w), 

1354.4 (m), 1337.5 (m), 1307.9 (w), 1281.0 (s), 1249.4 (w), 1207.9 (w), 1151.2 (w), 1121.8 (w), 

1027.5 (w), 982.2 (w), 948.9 (w), 907.4 (w), 874.6 (w), 830.1 9s), 810.0 (m), 760.8 (w), 704.4 (w), 

682.0 (w), 661.8 (w). LC-MS: Rt 3.43 min; HRMS (ESI): m/z calculated for C11H9N4O3 [M+H
+
]: 

245.0680; found 245.0681. 

N-Carbamoyl-7-methyl-3-oxo-3,4-dihydroquinoxaline-2-carboxamide and N-carbamoyl-8-methyl-3-

oxo-3,4-dihydro-quinoxaline-2-carboxamide (17). Prepared from 5-methyl-2-nitroaniline (0.152 g,  

1 mmol) to give a bright yellow solid, with two regioisomers found in a 3:2 ratio (0.215 g, 87% yield). 

This was gave an identical 
1
H-NMR to 16. 

N-Carbamoyl-7-methoxy-3-oxo-3,4-dihydroquinoxaline-2-carboxamide and N-carbamoyl-8-methoxy-

3-oxo-3,4-dihydroquinoxaline-2-carboxamide (18). Prepared from 4-methoxy-2-nitroaniline (0.206 g, 

1 mmol) to give an orange solid, with two regioisomers found in a 5:2 ratio (0.231 g, 88% yield).  
1
H-NMR gave broad peaks and not all quaternary centres were observed in the 

13
C-NMR. 

1
H-NMR 

(500 MHz, d6-DMSO): δ/ppm = 13.03 (s, 1H, NH), 11.23 (s, 1H, NH), 7.83-7.30 (br m, 6H), 7.03 (d,  

J = 8.7 Hz, 2H, NH2), 6.81 (d, J = 2.9 Hz, 2H, NH2), 3.88 (s, 3H, CH3), 3.84 (s, 3H, CH3). To separate 

broad peaks: 
1
H-NMR (400 MHz, d6-DMSO + 3 drops TFA): δ/ppm = 7.79 (1H from minor 

regioisomer, d, J = 9.0 Hz, CH, 2 or 3), 7.58 (1H from major regioisomer, s, H1), 7.00 (1H from minor 

regioisomer, d, J = 9.5 Hz, H2 or H3), 6.81 (1H from minor regioisomer, d, J = 2.5 Hz, H1) 6.69 (1H 

from major regioisomer, d, J = 9.3 Hz, H2 or H3), 6.60 (1H from major regioisomer, d, J = 9.3 Hz, H2 

or H3), 6.44 (2H, one from each regioisomer, d, J = 6.9 Hz, 2NH from the NH2), 6.24 (2H, one from 

each regioisomer, d, J = 6.6 Hz, 2NH from the NH2); 
13

C-NMR (125 MHz, d6-DMSO): δ/ppm = 162.9 

(C), 153.2 (C), 153.2 (C), 134.89 (C), 131.6 (CH), 126.9 (C), 116.7 (CH), 114.1 (CH), 110.5 (CH), 

103.7 (CH), 97.6 (CH), 56.0 (CH3), 55.8 (CH3). IR (neat) /cm
−1

: 3394.4 (w), 3315.5 (w), 3149.3 

(w,br), 2976.0 (w), 1731.0 (s), 1697.5 (s), 1676.5 (w), 1648.2 (s), 1618.5 (s), 1583.6 (s), 1502.4 (s) 
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1487 (s), 1471.4 (m), 1455.1 (m), 1441.4 (w), 1381.8 (s), 1370.6 (s)., 1280.7 (w), 1249.7 (m), 1222.3 

(s), 1184.2 (s), 1150.6 (m), 1110.4 (m), 1031.7 (m), 1012.8 (m), 969.4 (w), 914.1 (w), 839.5 (s), 822.0 

(s), 801.6 (s), 751.8 (w), 682.0 (w). LC-MS: Rt 3.44 min; HRMS (ESI): m/z calculated for C11H9N4O4 

[M+H
+
]: 261.0629; found 261.0634. 

N-Carbamoyl-7-fluoro-3-oxo-3,4-dihydroquinoxaline-2-carboxamide and N-carbamoyl-8-fluoro-3-

oxo-3,4-dihydro-quinoxaline-2-carboxamide (19). Prepared from 4-fluoro-2-nitroaniline (0.106 g,  

1 mmol) to give a pale green solid, with two regioisomers found in a 5:1 ratio (0.165 g, 66% yield). 
1
H-NMR gave broad peaks and not all quaternary centres were observed in the 

13
C-NMR. 

1
H-NMR 

(500 MHz, d6-DMSO): δ/ppm = 13.07 (1H from major regioisomer, br s, NH), 12.55 (1H from minor 

regioisomer, br s, NH), 11.03 (1H from major regiosiomer, br s, NH), 10.34 (1H from minor 

regioisomer, br s, NH), 7.94 (1H from major regioisomer, br s, NH from NH2) 7.76–7.57 (5H from 

minor regioisomer and 1H from major regioisomer, br m, 2NH from NH2, 4CH), 7.38 (1H from major 

regioisomer, br s, NH from NH2), 7.25 (1H from major regioisomer, s), 7.07 (1H from major 

regioisomer, d, J = 4.1 Hz); 
13

C-NMR (125 MHz, d6-DMSO): δ/ppm = 163.7 (C), 159.1 (C), 157.2 (C), 

154.0 (C-F), 134.4 (C), 132.4 (CH), 131.5 (C), 129.6 (CH), 128.4 (C), 121.0 (CH), 117.4 (C), 114.5 

(CH), 112.6 (CH), 101.6 (CH). IR (neat) /cm
−1

: 3380.2 (w), 3152.2 (w, br), 2732.4 (w,br) 1721.4 (s), 

1698.5 (s), 1649.5 (s), 1596.5 (m), 1578.9 (m), 1504.1 (s), 1485.6 (s), 1403.6 (s), 1364.1 (s), 1284.1 

(w), 1246.3 (m), 1201.8 (m), 1179.4 (m), 1144.7 (w), 1120.1 (w), 1099.3 (m), 978.9 (w), 939.0 (w), 

912.9 (w), 847.0 (m), 823.2 (s), 805.3 (s), 752.8 (w), 698.9 (w), 680.7 (m). LC-MS: Rt 3.23 min; 

HRMS (ESI): m/z calculated for C10H6N4O3F [M+H
+
]: 249.0429; found 249.0421. 

N-Carbamoyl-3-oxo-7(trifluoromethyl)-3,4-dihydro-quinoxaline-2-carboxamide and N-carbamoyl-3-oxo-

8(trifluoromethyl)-3,4-dihydroquinoxaline-2-carboxamide (20). Prepared from 2-nitro-5-(trifluromethyl)- 

aniline (0.206 g, 1 mmol) to give a pale yellow solid, with two regioisomers in a 5:2 ratio (0.178 g, 

59% yield). 
1
H-NMR gave broad peaks and not all quaternary centres were observed in the 

13
C-NMR. 

1
H-NMR (500 MHz, d6-DMSO): δ/ppm = 13.21 (1H from major regioisomer, s, NH), 12.78 (1H from 

minor regioisomer, br d, J = 40.35 Hz, NH), 10.95 (1H from major regioisomer, s, NH), 10.39 (1H 

from minor regioisomer, br, s, NH), 8.23–7.51 (6H, three from each regioisomer, m), 6.96 (2H, one 

from each regioisomer, br s, 2NH from the NH2’s), 6.23 (2H, one from both compounds, br s, 2NH 

from the NH2’s). To separate broad peaks: 
1
H-NMR (400 MHz, d6-DMSO + 3 drops TFA): δ/ppm = 7.97 

(1H from minor regioisomer, s, NH from NH2), 7.92 (1H from minor regioisomer, s, NH from NH2), 

7.76 (1H from minor regioisomer, s, H1), 7.62 (1H from minor regioisomer, s, H2 or H3), 7.51 (1H 

from minor regioisomer, d, J = 8.4 Hz, H2 or H3), 7.17 (1H from major regioisomer, d, J = 8.3, H2 or 

H3), 7.07 (1H from major regioisomer, s, H1), 7.01 (1H from major regioisomer, d, J = 8.3 Hz, NH 

from NH2), 6.96 (1H from major regioisomer, d, J = 8.3 Hz, NH from NH2), 6.81 (1H from major 

regioisomer, J = 8.3 Hz, H2 or H3); 
13

C-NMR (125 MHz, d6-DMSO): δ/ppm = 166.5 (CF3), 163.8 (C), 

153.0 (C-CF3), 135.4 (C), 133.0 (C), 130.9 (CH), 130.4 (C), 128.4 (CH), 126.9 (CH), 125.1 (C), 124.7 

(C, minor regioisomer), 122.8 (C, minor regioisomer), 122.5 (C, minor regioisomer), 120.1 (CH), 

117.2 (CH), 113.0 (CH). IR (neat) /cm
−1

: 3520.9 (w), 3411.4 (w), 3243.7 (w), 3159.1 (w), 1736.8 

(m), 1692.7 (s), 1674.6 (s), 1662.0 (s), 1625.9 (m), 1568.0 (w), 1506.1 (w), 1466.7 (w). 1412.1 (w), 

1376.5 (m), 1320.3 (m), 1285.7 (w), 1260.6 (w), 1242.3 (w), 1189.4 (w), 1166.3 (w), 1148.9 (s), 
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1135.7 (s), 1112.7 (m), 1091.4 (m), 1064.7 (m), 957.1 (w),901.4 (m), 847.0 (m), 832.5 (m), 820.7 (w), 

779.8 (w), 738.9 (w), 687.3 (m), 655.3 (m). LC-MS: Rt 3.80 min; HRMS (ESI): m/z calculated for 

C11H4F3N4O2 [M+H
+
]: 281.0292; found 281.0287. 

N-Carbamoyl-6-chloro-3-oxo-3,4-dihydroquinoxaline-2-carboxamid and N-carbamoyl-7-chloro-3-

oxo-3,4-dihydro-quinoxaline-2-carboxamide (21). Prepared from 4-chloro-2-nitroaniline (0.172 g,  

1 mmol) to give a pale yellow solid, with two regioisomers in an unknown ratio due to overlapping 
1
H 

signals (0.157 g, 59% yield). 
1
H-NMR (500 MHz, d6-DMSO): δ/ppm = 12.02 (s, 2H, 2NH), 11.79 (s, 2H, 

2NH), 8.17 (d, J = 9.0 Hz, 2xH3), 7.97 (d, J = 2.3 Hz, 2 × H1), 7.93 (4H, m, 2H, 2NH2), 7.78 (dd,  

J = 2.3 Hz, 9.0 Hz, 2 × H2); 
13

C-NMR (125 MHz, d6-DMSO): δ/ppm = 160.3 (br, 2C), 150.1 (br, C), 

147.6 (C), 147.2 (C), 143.1 (C), 141.4 (C), 139.4 (C), 137.9 (C), 137.8 (C), 133.7 (CH), 132.8 (C), 

132.5 (C), 132.3 (C), 132.0 (CH), 129.1 (CH), 128.8 (CH), 128.6 (CH), 125.7 (CH). IR (neat) /cm
−1

: 

3457.6 (w, br), 3184.9 (w), 3068.7 (w, br), 2850.5 (w), 1727.7 (m), 1697.9 (s), 1614.5 (m), 1578.8 

(m), 1562.0 (w), 1489.7 9(w), 1449.0 (w), 1388.9 (m), 1354.7 (m), 1335.8 (m), 1292.5 (m), 1275.0 

(m), 1245.9 (w), 1196.3 (w), 1145.6 (w), 1112.4 (w), 1071.0 (w), 1029.8 (m), 939.2 (w), 876.7 (w), 847.5 

(s), 806.6 (m), 751.5 (m), 738.1 (m), 692.8 (w), 666.2 (w). LC-MS: Rt 3.60 min; HRMS (ESI): m/z 

calculated for C10H4N4O2Cl [M+H
+
]: 266.0207; found 266.0211. 

6,8-Dibromo-N-carbamoyl-3-oxo-3,4-dihydroquinoxaline-2-carboxamide or 7,9-dibromo-N-carbamoyl-3- 

oxo-3,4-dihydroquinoxaline-2-carboxamide (22). Prepared from 2,4-dibromo-6-nitroaniline (0.294 g,  

1 mmol) to give a mixture of a green solid and a liquid component in approximately a 1:2 ratio. Upon 

purification one regioisomer was cleanly isolated (estimated yield 8%). HRMS (ESI): m/z calculated for 

C10H5N4O3Br2 [M+H
+
]: 386.8734; found 386.8716. 

1
H-NMR (400 MHz, d6-DMSO): δ/ppm = 11.20 

(s, 1H, NH), 11.04 (s, 1H, NH), 8.16 (d, J = 2.6 Hz, 1H), 8.05 (d, J = 2.2 Hz, 1H). 

3.5. General Procedure for the Formation of 1,5-Dibenzodiazepines 27a–k 

A mixture of the fluoro nitrobenzene derivative and the corresponding amino benzophenone/ 

fluorenone (1:1) was dissolved in dry THF in a microwave vial. Lithium bis(trimethylsilyl)amide 

(LiHMDS, 1.0 M solution in THF) was added dropwise and the mixture heated to 100 °C for 30 to 90 min 

using a Biotage Initiator microwave instrument. The reaction was quenched by addition of water and 

the mixture extracted with EtOAc. The combined organic layers were dried over anhydrous Na2SO4 

and the solvent evaporated under vacuum. Most of the intermediate products (25) were not further 

purified but directly hydrogenated in flow, although some of them were subjected to column 

chromatography and fully characterised to confirm the structure and complete data is shown below. 

(2-((5-Chloro-2-nitrophenyl)amino)phenyl)(phenyl)-methanone. 
1
H-NMR (400 MHz, CDCl3):  

δ/ppm = 10.98 (s, 1H, NH), 8.09 (d, J = 8.8 Hz, 1H), 7.81 (d, J = 1.1 Hz, 1H), 7.79 (d, J = 1.5 Hz, 1H), 

7.62–7.56 (m, 4H), 7.47–7.44 (m, 3H), 7.20 (dd, J = 7.6 Hz, 1.5 Hz, 1H), 6.80 (dd, J = 9.0 Hz, 2.0 Hz, 

1H); 
13

C-NMR (100 MHz, CDCl3): δ 196.7 (C=O), 141.7 (C), 141.3 (C), 139.7 (C), 138.1 (C), 134.2 

(C), 133.3 (CH), 133.3 (2 × CH), 130.5 (2 × CH), 129.8 (C), 128.8 (2 × CH), 128.5 (CH), 123.8 (CH), 

122.5 (CH), 119.7 (CH), 117.1 (CH). IR (neat) /cm
−1

: 3301.0 (w), 3062.6 (w), 1643 (w), 1608.2 (m), 

1596.2 (m), 1562.6 (s), 1486.6 (s), 1449.3 (m), 1409.4 (w), 1312.5 (m), 1335.1 (w), 1297.1 (m), 
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1248.8 (s), 1211.5 (m), 1180.2 (w), 1164.3 (w), 1103.8 (w), 1070.6 (w), 921.6 (m), 841.4 (w), 749.9 

(m), 700.8 (m). HRMS (m/z) calculated for C19H14O3N2Cl, (M-H), 353.0687; found 353.0678 

(5-Chloro-2-((5-chloro-2-nitrophenyl)amino)phenyl)-(phenyl)methanone. 
1
H-NMR (400 MHz, 

CDCl3): δ/ppm = 10.82 (s, 1H, NH), 8.11 (d, J = 9.2 Hz, 1H), 7.82 (d, J = 1.5 Hz, 1H), 7.80 (d, J = 1.4 

Hz, 1H), 7.65–7.58 (m, 2H), 7.56 (s, 1H), 7.54 (d, J = 2.0 Hz, 1H), 7.53–7.48 (m, 2H), 7.40 (d, J = 2.0 

Hz, 1H), 6.80 (dd, J = 9.2 Hz, 2.2 Hz, 1H); 
13

C-NMR (100 MHz, CDCl3): δ 195.3 (C=O), 141.8 (C), 

140.9 (C), 138.2 (C), 137.1 (C), 134.1 (C), 133.4 (CH), 132.8 (CH), 132.2 (CH), 130.9 (C), 130.1 (2 x 

CH), 128.7 (C), 128.6 (2 × CH), 128.2 (CH), 123.6 (CH), 119.7 (CH), 116.6 (CH). IR (neat) /cm
−1

: 

2673.4 (w), 2319.2 (w), 1646.9 (w), 1607.9 (m), 1568.3 (m), 1488.2 (s), 1395.9 (w), 1336.5 (w), 

1294.2 (w), 1259.7 (m), 1240.5 (m), 1163.3 (w), 1104.2 (w), 930.4 (w), 826.6 (w), 752.2 (w). HRMS 

(m/z) calculated for C19H13O3N2Cl2, (M-H), 387.0298; found 387.0289. 

(5-Chloro-2-((5-chloro-2-nitrophenyl)amino)phenyl)(3-chlorophenyl)methanone. 
1
H-NMR (400 MHz, 

CDCl3): δ/ppm = 11.33 (s, 1H, NH), 8.14 (d, J = 9.1 Hz, 1H), 7.57–7.40 (m, 8H), 6.94 (dd, J = 9.1 Hz, 

2.2 Hz, 1H); 
13

C-NMR (100 MHz, CDCl3): δ 195.7 (C=O), 140.2 (C), 140.1 (C), 138.3 (C), 135.8 (C), 

134.6 (CH), 133.5 (CH), 132.4 (CH), 131.8 (C), 130.7 (CH), 130.0 (CH), 128.5 (CH), 128.5 (C), 128.2 

(C), 127.4 (CH), 122.2 (CH), 121.1 (CH), 118.3 (CH). IR (neat) /cm
−1

: 2738.9 (w), 1648.0 (w), 

1607.8 (m), 1570.8 (m), 1488.2 (s), 1397.9 (w), 1336.5 (w), 1293.2 (s), 1247.5 (m), 1072.3 (w), 951.9 

(w), 929.7 (w), 828.3 (w), 748.9 (w), 699.8 (w). HRMS (m/z) calculated for C19H11O3N2Cl3Na, 

442.9727; found 442.9724. 

5-Chloro-2-((5-chloro-2-nitrophenyl)amino)phenyl)(2-fluoro-phenyl)methanone. 
1
H-NMR (400 MHz, 

CDCl3): δ/ppm = 11.09 (s, 1H, NH), 8.11 (d, J = 9.2 Hz, 1H), 7.64–7.48 (m, 5H), 7.44 (d, J = 2.2 Hz, 

1H), 7.28 (td, J = 7.7 Hz, 1.1 Hz, 1H), 7.13 (app t, 1H), 6.88 (dd, J = 9.0 Hz, 2.0 Hz, 1H); 
13

C-NMR 

(100 MHz, CDCl3): δ 192.7 (C=O), 160.1 (d, J = 253.6 Hz, C-F), 141.7 (C), 140.4 (C), 138.6 (C), 

134.8 (C), 134.3 (d, J = 8.4 Hz, CH), 133.7 (CH), 132.5 (d, J = 2.3 Hz, CH), 131.0 (d, J = 1.9 Hz, 

CH), 130.2 (C), 128.5 (CH), 128.1 (C), 126.4 (d, J = 13.6 Hz, C), 124.7 (d, J = 3.6 Hz, CH), 122.6 

(CH), 120.2 (CH), 117.4 (CH), 116.5 (d, J = 21.6 Hz, CH). IR (neat) /cm
−1

: 2338.9 (w), 1648.9 (w), 

1608.6 (m), 1570.1 (m), 1488.6 (s), 1453.1 (w), 1398.5 (w), 1336.3 (w), 1308.8 (w), 1259.7 (m), 

1243.7 (m), 1213.9 (w), 1072.1 (w), 931.2 (w), 753.12 (m). HRMS (m/z) calculated for 

C19H12O3N2Cl2F (M+H), 405.0204; found 405.0197. 

The nitro phenylamino derivatives 25 were hydrogenated in flow at 60 °C using a flow rate of  

0.5 mL/min, following the general procedure described before. The generated diamines were  

collected over MgSO4 and stirred for a further 1–2 h at room temperature to enhance the cyclisation 

process. After filtration to remove the drying agent, catalytic formic acid was added to the remaining 

solution and the mixture was stirred at room temperature overnight. The solvent was then removed 

under vacuum and the final benzodiazepines were purified by column chromatography and fully 

characterised by NMR.  

11-Phenyl-5H-dibenzo[b,e][1,4]diazepine (27a). Prepared from 1-fluoronitrobenzene and  

2-aminobenzophenone (175 mg, 65% yield). 
1
H-NMR (600 MHz, CDCl3): δ/ppm = 7.76 (d, J = 7.1 Hz, 
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2H), 7.48–7.42 (m, 3H), 7.36 (dd, J = 7.7 Hz, 1.0 Hz, 1H), 7.29 (td, J = 7.6 Hz, 1.1 Hz, 1H), 7.08 (td,  

J = 7.5 Hz, 1.0 Hz, 1H), 7.04 (m, 2H), 6.94 (t, J = 7.5 Hz, 1H), 6.77 (d, J = 7.9 Hz, 1H), 6.70 (dd,  

J = 7.6 Hz, 0.8 Hz, 1H), 5.03 (s, 1H); 
13

C-NMR (150 MHz, CDCl3): δ 169.6 (C), 154.5 (C), 142.7 (C), 

141.4 (C), 140.9 (C), 132.2 (CH), 132.0 (CH), 130.0 (CH), 129.6 (2xCH), 128.7 (CH), 128.0 (2 × CH), 

127.6 (C), 126.9 (CH), 124.2 (CH), 122.4 (CH), 119.8 (2 × CH); IR (neat) cm
−1

: 3354.0 (w), 3273.2 (w), 

3051.8 (w), 2850.2 (w), 1601.9 (w, N=C), 1494.8 (w), 1460.2 (m), 1401.3 (w), 1317.0 (w), 1283.1 

(w), 1234.6 (w), 1151.7 (w), 1108.2 (w), 958.5 (w), 944.3 (w), 853.1 (w), 802.7 (w), 756.4 (s), 694.7 

(s), 657.7 (m); LC-MS: tr = 4.68, m/z = 271.32 (C19H14N2)
+
. 

7-Chloro-11-phenyl-5H-dibenzo[b,e][1,4]diazepine (27b). Prepared from 4-chloro-2-fluoro-1-

nitrobenzene and 2-aminobenzophenone (201 mg, 66% yield). 
1
H-NMR (600 MHz, CDCl3): δ/ppm = 7.70 

(d, J = 7.1 Hz, 2H), 7.47–7.40 (m, 3H), 7.32 (t, J = 7.0 Hz, 1H), 7.22 (d, J = 8.3 Hz, 1H), 7.02 (d,  

J = 8.0 Hz, 2H), 6.97 (t, J = 7.4 Hz, 1H), 6.77 (d, J = 7.8 Hz, 1H), 6.72 (d, J = 1.8 Hz, 1H), 4.97 (s, 

1H); 
13

C-NMR (150 MHz, CDCl3): δ 169.8 (C), 153.6 (C), 143.4 (C), 141.0 (C), 139.5 (C), 132.3 (C), 

132.2 (CH), 132.1 (CH), 130.2 (CH), 129.6 (CH), 129.5 (2 × CH), 128.0 (2xCH), 127.5 (C), 124.2 

(CH), 122.8 (CH), 119.9 (CH), 119.7 (CH); IR (neat) cm
−1

: 3359.8 (w, NH), 3053.7 (w), 1607.9 (s, 

N=C), 1573.1 (w), 1455.8 (s), 1433.3 (w), 1317.6 (w), 1285.6 (m), 1250.0 (w), 1117.5 (w), 1089.7 

(w), 957.6 (w), 915.0 (m), 855.7 (m), 815.9 (s), 778.8 (s), 742.5 (s), 722.6 (m), 692.8 (s), 681.2 (s), 

666.1 (m); LC-MS: tr = 5.13, m/z = 304.90 (C19H13ClN2)
+
. The structure was unambiguously 

confirmed by X-ray crystallography and deposited at the Cambridge Crystallographic Data Centre with 

the unique reference number CCDC 867823; Formula: C19H13ClN2, unit cell parameters: a = 

16.4748(5) Å, b = 5.6296(2) Å, c = 16.0146(7) Å,  = 90°, β = 102.528(2)°, γ = 90°, space group: P21/c. 

2-Chloro-11-phenyl-5H-dibenzo[b,e][1,4]diazepine (27c). Prepared from 1-fluoronitrobenzene and  

2-amino-4-chlorobenzophenone (110 mg, 72% yield). 
1
H-NMR (600 MHz, CDCl3): δ/ppm = 7.71 (d,  

J = 7.1 Hz, 2H), 7.49-7.42 (m, 3H), 7.32 (dd, J = 7.6 Hz, 1.4 Hz, 1H), 7.27–7.25 (m, 1H), 7.09–7.03 

(m, 2H), 6.99 (d, J = 2.3 Hz, 1H), 6.74 (d, J = 8.5 Hz, 1H), 6.71 (dd, J = 7.5 Hz, 1.3 Hz, 1H), 5.02 (s, 

1H); 
13

C-NMR (150 MHz, CDCl3): δ 153.0 (C), 142.2 (C), 140.5 (C), 140.4 (C), 131.8 (CH), 131.6 

(CH), 130.2 (CH), 129.5 (2 × CH), 128.8 (CH), 128.2 2 × (CH), 127.9 (C), 127.8 (C), 127.7 (C), 127.2 

(CH), 124.5 (CH), 121.1 (CH), 119.8 (CH); IR (neat) cm
−1

: 3269.5 (w, NH), 3053.0 (w), 1610.6 (w, 

N=C), 1569.3 (w), 1489.0 (w), 1461.7 (w), 1421.2 (w), 1318.9 (w), 1280.2 (w), 1234.7 (w), 1120.4 

(w), 964.9 (w), 823.2 (m), 806.3 (m), 760.2 (s), 738.6 (s), 698.1 (s), 667.8 (w); LC-MS: tr = 5.09,  

m/z = 305.03 (C19H13ClN2)
+
. 

2,7-Dichloro-11-phenyl-5H-dibenzo[b,e][1,4]diazepine (27d). Prepared from 4-chloro-2-fluoro-1-

nitrobenzene and 2-amino-4-chlorobenzophenone (99 mg, 59% yield). 
1
H-NMR (600 MHz, CDCl3): 

δ/ppm = 7.69 (d, J = 7.2 Hz, 2H), 7.49-7.40 (m, 3H), 7.27 (m, 1H), 7.22 (d, J = 8.4 Hz, 1H), 7.04 (dd,  

J = 8.4 Hz, 2.2 Hz, 1H), 6.99 (d, J = 2.3 Hz, 1H), 6.73–6.71 (m, 2H), 4.99 (s, 1H); 
13

C-NMR (150 MHz, 

CDCl3): δ 168.2 (C), 152.0 (C), 142.9 (C), 140.3 (C), 139.2 (C), 132.4 (C), 131.9 (CH), 131.6 (CH), 

130.5 (CH), 129.7 (CH), 129.6 (2 × CH), 129.4 (C), 128.9 (C), 128.3 (2 × CH), 124.5 (CH), 121.2 

(CH), 119.8 (CH); IR (neat) cm
−1

: 3359.6 (w), 3259.7 (w), 3054.2 (w), 1608.7 (m, N=C), 1573.9 (w), 

1454.7 (m), 1316.9 (m), 1287.3 (w), 1249.8(w), 1117.0 (w), 1087.6 (w), 957.9 (w), 915.2 (m), 858.1 
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(m), 816.5 (m), 778.8 (m), 742.8 (m), 691.9 (s); LC-MS: tr = 5.35, m/z = 339.22 (C19H12Cl2N2)
+
. The 

structure was unambiguously confirmed by X-ray crystallography and deposited at the Cambridge 

Crystallographic Data Centre with the unique reference number CCDC 867824; Formula: C19H12Cl2N2, 

unit cell parameters: a = 14.2135(5) Å, b = 9.2512(4) Å, c = 25.0981(10) Å, α = 90°, β = 103.764(2)°,  

γ = 90°, space group: C2/c. 

2,7-Dichloro-11-(2-chlorophenyl)-5H-dibenzo[b,e][1,4]-diazepine (27e). Prepared from 4-chloro-2-

fluoro-1-nitrobenzene and 2-amino-2’,4-dichloro-benzophenone (131 mg, 70% yield). 
1
H-NMR (600 

MHz, CDCl3): δ/ppm = 7.54 (m, 1H), 7.40–7.36 (m, 3H), 7.18 (dd, J = 8.5 Hz, 2.4 Hz, 1H), 7.14 (d, J = 

8.4 Hz, 1H), 6.98 (dd, J = 8.4 Hz, 2.2 Hz, 1H), 6.70 (d, J = 2.1 Hz, 1H), 6.65–6.63 (m, 2H), 5.47 (s, 

1H); 
13

C-NMR (150 MHz, CDCl3): δ 167.7 (C), 151.5 (C), 143.6 (C), 140.0 (C), 138.4 (C), 133.6 (C), 

132.6 (C), 132.2 (CH), 130.8 (CH), 130.6 (CH), 130.3 (CH), 130.2 (CH), 130.1 (CH), 129.7 (C), 128.4 

(C), 127.0 (CH), 124.3 (CH), 120.9 (CH), 120.0 (CH); IR (neat) cm
−1

: 3257.3 (w, NH), 3051.1 (w), 

2919.2 (w), 2850.0 (w), 1605.9 (m, N=C), 1489.2 (w), 1446.1 (m), 1434.2 (m), 1390.9 (w), 1315.9 

(m), 1258.5 (w), 1236.7 (w), 1204.1 (w), 1155.6 (w), 1123.8 (w), 1085, 2 (w), 1057.6 (w), 968.8 (w), 

942.8(w), 916.4(m), 880.9 (m), 857.7 (s), 822.1 (s), 747.5 (s), 727.9 (s); LC-MS: tr = 5.26, m/z = 374.94 

(C19H11Cl3N2)
+
. The structure was unambiguously confirmed by X-ray crystallography. and deposited at 

the Cambridge Crystallographic Data Centre with the unique reference number CCDC 867822; Formula: 

C19H11Cl3N2, unit cell parameters: a = 15.5464(3) Å, b = 9.3738(2) Å, c = 24.0677(5) Å,  = 90°,  

β = 107.942(1)°, γ = 90°, space group: C2/c. 

8-Fluoro-11-phenyl-5H-dibenzo[b,e][1,4]diazepine (27f). Prepared from 1,4-difluoro-2-nitrobenzene 

and 2-aminobenzophenone (192 mg, 67% yield). 
1
H-NMR (600 MHz, CDCl3): δ/ppm = 7.71 (d,  

J = 7.3 Hz, 2H), 7.48–7.40 (m, 3H), 7.32 (td, J = 7.6 Hz, 1.2 Hz, 1H), 7.04 (d, J = 9.2 Hz, 2H), 6.96 

(t, J = 7.5 Hz, 1H), 6.79 (d, J = 7.9 Hz, 1H), 6.75 (td, J = 8.2 Hz, 2.8 Hz 1H), 6.66–6.63 (m, 1H), 4.95 

(s, 1H); 
13

C-NMR (150 MHz, CDCl3): δ 170.6 (C), 159.8 (d, J = 240.7 Hz, C-F), 154.5 (C), 142.1 (d,  

J = 10.6 Hz, C), 140.9 (C), 138.7 (d, J = 2.5 Hz, C), 132.2 (d, J = 9.2 Hz, CH), 130.3 (CH), 129.7  

(2 × CH), 128.0 (2 × CH), 127.5 (C), 122.6 (CH), 120.2 (d, J = 9.1 Hz, CH), 119.7 (2 × CH), 114.7 (d, 

J = 23.4 Hz, CH), 113.0 (d, J = 22.9 Hz, CH); IR (neat) cm
−1

: 3350.8 (w), 3061.9 (w), 1600.9 (m, 

N=C), 1570.4 (w), 1497.7 (m), 1461.6 (s), 1389.2 (w), 1318.2 (w), 1285.9 (w), 1257.3 (m), 1169.8 (w), 

1135.0 (w), 1099.1 (w), 970.8 (m), 906.5 (w), 869.2 (w), 807.7 (m), 750.1 (s), 721.8 (s), 694.3 (s), 660.3 

(m); LC-MS: tr = 4.99, m/z = 288.92 (C19H13FN2)
+
. 

2-Chloro-8-fluoro-11-phenyl-5H-dibenzo[b,e][1,4]diazepine (27g). Prepared from 1,4-difluoro-2-

nitrobenzene and 2-amino-4-chlorobenzophenone (81 mg, 50% yield) 
1
H-NMR (600 MHz, CDCl3): 

δ/ppm = 7.70 (d, J = 7.4 Hz, 2H), 7.50-7.42 (m, 3H), 7.28 (dd, J = 8.5 Hz, 2.3 Hz, 1H), 7.03 (dd,  

J = 9.5 Hz, 2.8 Hz, 1H), 7.00 (d, J = 2.3 Hz, 1H), 6.77–6.73 (m, 2H), 6.64 (m, 1H), 4.93 (s, 1H);  
13

C-NMR (150 MHz, CDCl3): δ 169.0, 159.9 (d, J = 241.4 Hz, C-F), 153.0, 141.8 (d, J = 10.8 Hz), 

140.2, 138.2 (d, J = 2.6 Hz), 131.9, 131.6, 130.6, 129.5, 128.8, 128.3, 128.1, 121.1, 120.2 (d, J = 9.0 Hz), 

114.8 (d, J = 23.5 Hz), 113.3 (d, J = 22.9 Hz); IR (neat) cm
−1

: 3272.0 (w, NH), 3064.0 (w), 1598.2 (w), 

15.72.3 (w), 1491.6 (w), 1463.7 (s), 1318.2 (w), 1258.0 (s), 1206.4 (w), 1138.9 (w), 1119.2 (m), 



Molecules 2014, 19 9754 

 

 

1100.9 (w), 976.8 (w), 954.8 (w), 909.0 (w), 868.1 (m), 820.2 (m), 774.6 (w), 755.5 (m), 721.9 (s), 

692.3(s); LC-MS: tr = 5.15, m/z = 322.84 (C19H12ClFN2)
+
. 

2,7-Dichloro-11-(2-fluorophenyl)-5H-dibenzo[b,e][1,4]diazepine (27h). Prepared from 4-chloro-2-

fluoro-1-nitrobenzene and 2-amino-4-chloro-2’-fluoro-benzophenone (105 mg, 33% yield). 
1
H-NMR 

(400 MHz, CDCl3): δ/ppm = 7.67 (td, J = 7.6 Hz, 1.9 Hz, 1H), 7.46–7.40 (m, 1H), 7.25 (dd, J = 7.5 Hz, 

1.0 Hz, 1H), 7.22–7.19 (m, 1H), 7.15 (d, J = 8.5 Hz, 1H), 7.09–7.04 (m, 1H), 6.98 (dd, J = 8.6 Hz, 2.0 Hz, 

1H), 6.83 (d, J = 2.4 Hz, 1H), 6.82–6.80 (m, 1H), 5.83 (s, 1H); 
13

C-NMR (100 MHz, CDCl3): δ 164.9 

(C), 160.5 (d, J = 250.0 Hz, C-F), 151.1 (C), 143.6 (C), 138.7 (C), 133.2 (C), 132.1 (CH), 131.7 (d,  

J = 8.3 Hz, CH), 131.3 (d, J = 2.5 Hz, CH), 130.1 (CH), 130.1 (d, J = 1.7 Hz, C), 130.0 (C), 129.0 (d,  

J = 12.4 Hz, C), 128.4 (C), 124.3 (d, J = 3.3 Hz, CH), 124.2 (CH), 121.2 (CH), 120.0 (CH), 116.2 (d, 

J = 17.5 Hz, CH); IR (neat) cm
−1

: 3235.0 (w), 2949.9 (w), 2663.3 (w), 1610.7 (m), 1482.9 (m), 1454.4 

(s), 1389.8 (w), 1316.2 (w), 1290.5 (w), 1237.0 (w), 1161.9 (w), 1089.1 (w), 1035.0 (w), 919.2 (w), 

838.7 (w), 756.5 (w); HRMS (m/z) calculated for C19H12N2Cl2F (M+H) 357.0356; found 357.0349. 

13H-Benzo[b]fluoreno[1,9-ef][1,4]diazepine (27i). Prepared from 1-fluoronitrobenzene and  

2-aminofluorenone (120 mg, 51% yield). 
1
H-NMR (400 MHz, CDCl3): δ/ppm = 7.55 (d, J = 7.5 Hz, 

1H), 7.28 (m, 2H), 7.20 (m, 1H), 6.85 (dd, J = 7.7 Hz, 1.5 Hz, 1H), 6.70 (t, J = 7.7 Hz, 1H), 6.66 (td,  

J = 7.7 Hz, 1.5 Hz, 1H), 6.45 (d, J = 7.4 Hz, 1H), 6.52 (dt, J = 7.4 Hz, 1.5 Hz, 1H), 5.82 (dd, J = 8.0 Hz, 

1.5 Hz, 1H), 5.61 (d, J = 7.8 Hz, 1H), 4.41 (s, 1H, NH); 
13

C-NMR (100 MHz, CDCl3): δ 165.1 (C), 

147.3 (C), 144.5 (C), 142.0 (C), 141.0 (C), 138.5 (C), 137.7 (C), 136.0 (CH), 135.4 (CH), 131.5 (CH), 

130.9 (CH), 128.4 (CH), 123.3 (CH), 122.8 (CH), 121.8 (C), 120.2 (CH), 119.2 (CH), 114.3 (CH), 

111.9 (CH). IR (neat) cm
−1

: 3400.1 (w), 3061.8 (w), 2925 (w), 1645.6 (w), 1623.4 (m), 1597.0 (m), 

1466.0 (s), 1454.0 (m), 1434.5 (w), 1412.5 (w), 1321.8 (m), 1157.0 (w), 1058.7 (w), 958.5 (w), 779.1 

(w), 747.5 (s). HRMS (m/z) calculated for C19H13N2 (M+H), 269.1073; found 269.1068. 

10-Fluoro-13H-benzo[b]fluoreno[1,9-ef][1,4]diazepine (27j). Prepared from 1,4-difluoro-2-

nitrobenzene and 2-aminofluorenone (105 mg, 37% yield). 
1
H-NMR (500 MHz, d6-DMSO): δ/ppm = 7.42 

(dd, J = 7.2 Hz, 1.0 Hz, 1H), 7.37 (d, J = 1.0 Hz, 1H), 7.34 (m, 1H), 7.20 (td, J = 7.5 Hz, 1.0 Hz, 1H), 

6.99 (m, 1H, NH), 6.70 (td, J = 7.5 Hz, 1.7 Hz, 1H), 6.53 (m, 1H), 6.46 (dd, J = 7.2 Hz, 0.7 Hz, 1H), 

6.35 (dd, J = 9.8 Hz, 3.0 Hz, 1H), 6.02 (dd, J = 8.9 Hz, 5.8 Hz, 1H), 5.73 (dd, J = 7.5 Hz, 0.7 Hz, 1H);  
13

C-NMR (125 MHz, d6-DMSO): δ 166.0 (C), 157.6 (d, 295.2, C-F), 148.7 (C), 143.5 (C), 141.4 (C), 

138.8 (d, J = 9.1 Hz, C), 138.7 (d, J = 3.3 Hz, C), 136.2 (CH), 136.0 (C), 131.9 (CH), 122.1 (CH), 

120.8 (d, J = 28.4 Hz, CH), 120.4 (C), 120.4 (CH), 119.9 (d, J = 10.1 Hz, CH), 116.8 (d, J = 27.1 Hz, 

CH), 114.7 (C), 111.1 (CH). IR (neat) cm
−1

: 3390.0 (w, NH), 3060.0 (w), 2327.6 (w), 1650.0 (w), 

1597.8 (s), 1468.1 (s), 1455.1 (m), 1421.7 (m), 1320.0 (w), 1266.3 (m), 1210.5 (w), 1160.3 (w), 974.7 

(w), 957 (w), 878.5 (w), 749.4 (m). HRMS (m/z) calculated for C19H12N2F (M+H), 287.0979; found 

287.0972. 

11-Chloro-13H-benzo[b]fluoreno[1,9-ef][1,4]diazepine (27k). Prepared from 4-chloro-2-fluoro-1-

nitrobenzene and 2-aminofluorenone (105 mg, 42% yield). 
1
H-NMR (500 MHz, d6-DMSO): δ/ppm = 7.43 

(dd, J = 7.1 Hz, 1.0 Hz, 1H), 7.37 (d, J = 1.4 Hz, 1H), 7.34 (dd, J = 7.8 Hz, 1.0 Hz, 1H), 7.21 (td,  

J = 7.5 Hz, 1.0 Hz, 1H), 7.18 (m, 1H, NH), 6.73 (t, J = 8.0 Hz, 1H), 6.56 (d, J = 8.1 Hz, 1H), 6.52 (d,  
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J = 7.5 Hz, 1H), 6.41 (dd, J = 8.5 Hz, 2.4 Hz, 1H), 6.09 (d, J = 2.4 Hz, 1H), 5.73 (dd, J = 8.2 Hz, 0.7 Hz, 

1H); 
13

C-NMR (125 MHz, d6-DMSO): δ 164.2 (C), 147.4 (C), 143.4 (C), 1471.3 (C), 136.6 (CH), 

136.5 (C), 136.0 (C), 135.9 (CH), 134.8 (C), 131.8 (CH), 128.3 (CH), 122.0 (CH), 121.4 (CH), 120.8 

(C), 120.5 (CH), 118.2 (CH), 114.7 (CH), 111.81 (CH). IR (neat) cm
−1

: 3395.1 (w, NH), 2926.3 (m), 

2851.7 (m), 2308.1 (w), 1720.5 (w), 1650.0 (w), 1627.2 (w), 1598.5 (m), 1575.6 (m), 1464.8 (s), 

1422.2 (m), 1314.2 (w), 1104.5 (w), 966.6 (w), 806.7 (w), 778.7 (w), 750.4 (m). HRMS (m/z) 

calculated for C19H12N2Cl (M+H), 303.0684; found 303.0675.  

Crystallographic data for compounds 27b, 27d and 27e have been deposited with the accession 

numbers CCDC 867822, 867823 and 867824contains the supplementary crystallographic data for this 

paper. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html 

(or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44 1223 336033; E-mail: 

deposit@ccdc.cam.ac.uk) 

4. Conclusions 

In summary, we have successfully extended on our earlier reports detailing the flow-based 

chemoselective reduction of important nitro substituted building blocks. This efficient methodology 

allowed the rapid generation of valuable aminobenzene intermediates, which were used as starting 

points in accessing important heterocyclic scaffolds such as riboflavines, quinoxalinones and 

dibenzodiazepines. Importantly, the mild reaction conditions of the developed protocols allow for 

directly employing substrates bearing valuable yet sensible halide functionalities.  

Acknowledgments 

We gratefully acknowledge financial support from the Royal Society (IRB, MB). 

Author Contributions  

All authors contributed equally in performing the research, analyzing the data and writing the 

manuscript. All authors read and approved the final manuscript. 

Conflicts of Interest 

The authors declare no conflict of interest.  

References  

1. Silverman, R.B. The Organic Chemistry of Drug Design and Drug Action, 2nd ed.; Academic 

Press: San Diego, CA, USA, 2004.  

2. Li, J.-J.; Johnson, D.S.; Sliskovich, D.R.; Roth, B.D. Contemporary Drug Synthesis; John Wiley 

and Sons: Chichester, UK, 2004. 

3. Wermuth, C.G. The Practice of Medicinal Chemistry, 3rd ed.; Elsevier Academic Press: 

Burlington, MA, USA, 2008. 



Molecules 2014, 19 9756 

 

 

4. Baumann, M.; Baxendale, I.R.; Ley, S.V.; Nikbin, N. An overview of the key routes to the best 

selling 5-membered ring heterocyclic pharmaceuticals. Beilstein J. Org. Chem. 2011, 7, 442–496. 

5. Baumann, M.; Baxendale, I.R. An overview of the synthetic routes to the best selling drugs 

containing 6-membered heterocycles. Beilstein J. Org. Chem. 2013, 9, 2265–2319.  

6. Li, J.-J. Heterocyclic Chemistry in Drug Discovery, 1st ed.; John Wiley & Sons: Hoboken, NJ, 

USA, 2013. 

7. Scannel, J.W.; Blanckley, A.; Boldon, H.; Warrington, B. Diagnosing the decline in 

pharmaceutical R&D efficiency. Nat. Rev. Drug Discov. 2012, 11, 191–200.  

8. Baxendale, I.R.; Hayward, J.J.; Ley, S.V.; Tranmer, G.K. Pharmaceutical strategy and innovation: 

An academics perspective. ChemMedChem 2007, 2, 768–788.  

9. Wild, H.; Heimbach, D.; Huwe, C. The importance of chemistry for the future of the pharma 

industry. Angew. Chem. Int. Ed. 2011, 50, 7452–7453. 

10. Wegner, J.; Ceylan, S.; Kirschning, A. Ten key issues in modern flow chemistry. Chem. Commun. 

2011, 47, 4583–4592.  

11. Tierney, J.P.; Lidström, P. Microwave Assisted Organic Synthesis; Blackwell CRC Press: Oxford, 

UK, 2005.  

12. Yoshida, J. Flash Chemistry: Fast Organic Synthesis in Microsystems; John Wiley & Sons: 

Chichester, UK, 2008. 

13. Razzaq, T.; Kappe, C.O. Continuous flow organic synthesis under high-temperature/pressure 

conditions. Chem.-Asian J. 2010, 5, 1274–1289.  

14. Noël, T.; Naber, J.R.; Hartman, R.L.; McMullen, J.P.; Jensen, K.F.; Buchwald, S.L.  

Palladium-catalyzed amination reactions in flow: Overcoming the challenges of clogging via 

acoustic irradiation. Chem. Sci. 2011, 2, 287–290.  

15. Ceylan, S.; Coutable, L.; Wegner, J.; Kirschning, A. Inductive heating with magnetic materials 

inside flow reactors. Chem.-Eur. J. 2011, 17, 1884–1893.  

16. Rasheed, M.; Wirth, T. Intelligent microflow: Development of self-optimizing reaction systems. 

Angew. Chem. Int. Ed. 2010, 50, 357–358. 

17. Wiles, C.; Watts, P. Recent advances in micro reaction technology. Chem. Commun. 2011, 47, 

6512–6535.  

18. Ley, S.V. On being green: Can flow chemistry help? Chem. Rec. 2012, 378–390. 

19. Hartman, R.L.; McMullen, J.P.; Jensen, K.F. Deciding whether to go with the flow: Evaluating 

the merits of flow reactors for synthesis. Angew. Chem. Int. Ed. 2011, 50, 7502–7519.  

20. Wiles, C.; Watts, P. Continuous flow reactors: A perspective. Green Chem. 2012, 14, 38–54.  

21. Wegner, J.; Ceylan, S.; Kirschning, A. Flow chemistry-a key enabling technology for (multistep) 

organic synthesis. Adv. Synth. Catal. 2012, 354, 17–57.  

22. Malet-Sanz, L.; Susanne, F. Continuous flow synthesis. A pharma perspective. J. Med. Chem. 

2012, 55, 4062–4098.  

23. Baxendale, I.R. The integration of flow reactors into synthetic organic chemistry. J. Chem. 

Technol. Biot. 2013, 88, 519–552.  

24. Baumann, M.; Baxendale, I.R.; Ley, S.V. The flow synthesis of heterocycles for natural product 

and medicinal chemistry applications. Mol. Divers. 2011, 15, 613–630. 

http://www.beilstein-journals.org/bjoc/single/articleFullText.htm?vt=f&publicId=1860-5397-7-57&sso=month&tpn=0&bpn=topTen
http://www.beilstein-journals.org/bjoc/single/articleFullText.htm?vt=f&publicId=1860-5397-7-57&sso=month&tpn=0&bpn=topTen
http://www.beilstein-journals.org/bjoc/single/articleFullText.htm?vt=f&publicId=1860-5397-9-265&sso=month&tpn=0&bpn=topTen
http://www.beilstein-journals.org/bjoc/single/articleFullText.htm?vt=f&publicId=1860-5397-9-265&sso=month&tpn=0&bpn=topTen
http://pubs.rsc.org/en/content/articlelanding/2011/cc/c0cc05060a
http://pubs.rsc.org/en/content/articlelanding/2011/sc/c0sc00524j
http://pubs.rsc.org/en/content/articlelanding/2011/sc/c0sc00524j
http://pubs.rsc.org/en/content/articlelanding/2011/cc/c1cc00089f
http://dx.doi.org/10.1002/tcr.201100041
http://onlinelibrary.wiley.com/doi/10.1002/anie.201004637/abstract
http://onlinelibrary.wiley.com/doi/10.1002/anie.201004637/abstract
http://pubs.rsc.org/en/content/articlelanding/2012/gc/c1gc16022b
http://pubs.acs.org/doi/abs/10.1021/jm2006029


Molecules 2014, 19 9757 

 

 

25. Glasnov, T.N.; Kappe, C.O. Toward a continuous-flow synthesis of Boscalid
®

. Adv. Synth. Catal. 

2010, 352, 3089–3097. 

26. Baxendale, I.R.; Deeley, J.; Griffiths-Jones, C.M.; Ley, S.V.; Saaby, S.; Tranmer, G.K.  

A flow process for the multi-step synthesis of the alkaloid natural product oxomaritidine.  

Chem. Commun. 2006, 2566–2568.  

27. Baumann, M.; Baxendale, I.R.; Ley, S.V.; Nikbin, N.; Smith, C.D.; Tierney, J.P. A modular flow 

reactor for performing Curtius rearrangements as a continuous flow process. Org. Biomol. Lett. 

2008, 6, 1577–1586.  

28. Polyzos, T.; O’Brien, M.; Pugaard-Petersen, T.; Baxendale, I.R.; Ley, S.V. The continuous flow 

synthesis of carboxylic acids using CO2 in a tube-in-tube gas-permeable membrane reactor. 

Angew. Chem. Int. Ed. 2011, 50, 1190–1193.  

29. Browne, D.L.; Baumann, M.; Harji, B.H.; Baxendale, I.R.; Ley, S.V. A new enabling technology 

for convenient laboratory scale continuous flow processing at low temperatures. Org. Lett. 2011, 

13, 3312–3315.  

30. Hopkin, M.D.; Baxendale, I.R.; Ley, S.V. An expeditious synthesis of Imatinib and analogues 

utilising flow chemistry methods. Org. Biomol. Chem. 2013, 11, 1822–1839.  

31. Hu, D.X.; O’Brien, M.; Ley, S.V. Continuous multiple liquid–liquid separation: Diazotization of 

amino acids in flow. Org. Lett. 2012, 14, 4246–4249.  

32. Baxendale, I.R.; Ley, S.V.; Mansfield, A.C.; Smith, C.D. Multi-step synthesis using modular flow 

reactors: Bestmann-Ohira reagent for the formation of alkynes and triazoles. Angew. Chem. Int. Ed. 

2009, 48, 3287–3289. 

33. Malet-Sanz, L.; Madrzak, J.; Ley, S.V.; Baxendale, I.R. Preparation of arylsulfonyl chlorides by 

chlorosulfonylation of in-situ generated diazonium salts using a continuous flow reactor.  

Org. Biomol. Chem. 2010, 8, 5324–5332. 

34. Sedelmeier, J.; Ley, S.V.; Baxendale, I.R.; Baumann, M. KMnO4 mediated oxidation as a 

continuous flow process. Org. Lett. 2010, 12, 3618–3621. 

35. Qian, Z.; Baxendale, I.R.; Ley, S.V. A continuous flow process using a sequence of microreactors 

with in-line IR analysis for the preparation of N,N-diethyl-4-(3-fluorophenylpiperidin-4-

ylidenemethyl)benzamide as a potent and highly selective δ-opioid receptor. Chem.-Eur. J. 2010, 

16, 12342–12348.  

36. Venturoni, F.; Nikbin, N.; Ley, S.V.; Baxendale, I.R. The application of flow microreactors to the 

preparation of a family of casein kinase I inhibitors. Org. Biomol. Chem. 2010, 8, 1798–1806.  

37. Baxendale, I.R.; Schou, S.C.; Sedelmeier, J.; Ley, S.V. Multi-Step synthesis by using modular 

flow reactors: The preparation of yne-ones and their use in heterocycle synthesis. Chem.-Eur. J. 

2010, 16, 89–94.  

38. Smith, C.J.; Nikbin, N.; Ley, S.V.; Lange, H.; Baxendale, I.R. A fully automated, multistep flow 

synthesis of 5-amino-4-cyano-1,2,3-triazoles. Org. Biomol. Chem. 2011, 9, 1938–1947.  

39. Guetzoyan, L.; Nikbin, N.; Baxendale, I.R.; Ley, S.V. Flow chemistry synthesis of Zolpidem, 

Alpidem and other GABAA agonists and their biological evaluation through the use of in-line 

frontal affinity chromatography. Chem. Sci. 2013, 4, 764–769.  

http://onlinelibrary.wiley.com/doi/10.1002/adsc.201000646/abstract
http://pubs.acs.org/doi/abs/10.1021/ol301930h
http://pubs.acs.org/doi/abs/10.1021/ol301930h


Molecules 2014, 19 9758 

 

 

40. Battilocchio, C.; Deadman, B.J.; Nikbin, N.; Kitching, M.O.; Baxendale, I.R.; Ley, S.V.  

A machine-assisted flow synthesis of SR48692: A probe for the investigation of neurotensin 

receptor-1. Chem.-Eur. J. 2013, 19, 7917–7930. 

41. Baumann, M.; Baxendale, I.R.; Ley, S.V. Synthesis of 3-nitropyrrolidines via dipolar 

cycloaddition reactions using a modular flow reactor. Synlett 2010, 749–752.  

42. Baumann M.; Baxendale, I.R.; Wegner, J.; Kirschning, A.; Ley, S.V. Synthesis of highly 

substituted nitropyrrolidines, nitropyrrolizines and nitropyrroles via multicomponent-multistep 

sequences within a flow reactor. Heterocycles 2010, 82, 1297–1316.  

43. Baumann, M.; Martin, R.E.; Kuratli, C.; Schneider, J.; Baxendale, I.R.; Ley, S.V. Synthesis of a 

drug-like focused library of trisubstituted pyrrolidines using integrated flow chemistry and batch 

methods. ACS Comb. Sci. 2011, 13, 405–413. 

44. Granados-Soto, V.; Terán-Rosales, F.; Rocha-González, H.I.; Reyes-García, G.; Medina-Santillán, R.; 

Rodríguez-Silverio, J. Riboflavin reduces hyperalgesia and inflammation but not tactile allodynia 

in the rat. Eur. J. Pharmacol. 2004, 492, 35–40.  

45. Banekovich, C.; Ott, I.; Koch, T.; Mutuszczak, B.; Gust, R. Synthesis and biological activities of 

novel dexibuprofen tetraacetylriboflavin conjugates. Biol. Med. Chem. Lett. 2007, 17, 683–687.  

46. Cowden, W.B.; Halladay, P.K.; Cunningham, R.B.; Hunt, N.H.; Cleak, I.A. Flavins as potential 

antimalarials. 2. 3-Methyl-10-(substituted-phenyl)flavins. J. Med. Chem. 1991, 34, 1818–1822. 

47. Shorter, E. Benzodiazepines. A Historical Dictionary of Psychiatry; Oxford University Press: 

Oxford, UK, 2005.  

48. Page, C.; Michael, C.; Sutter, M.; Walker, M.; Hoffman, B.B. Integrated Pharmacology, 3rd ed.; 

Elsevier: London, UK, 2006.  

49. Olkkola, K.T.; Ahonen, J. Midazolam and other benzodiazepines. In Handbook of Experimental 

Pharmacology; Barrett, J.E., Flockerzi, V., Geppetti, P., Hofmann, F.B., Michel, M.C., Moore, P., 

Page, C.P., Eds.; Spring: Berlin, Germany, 2008; Volume 182, pp. 335–360.  

50. McGrath, N.A.; Brichacek, M.; Njardarson, J.T. A graphical journey of innovative organic 

architectures that have improved our lives. J. Chem. Educ. 2010, 87, 1348–1349.  

51. Ilardi, E.A.; Vitaku, E.; Njardarson, J.T. An in-pharm-ative educational poster anthology 

highlighting the therapeutic agents that chronicle our medicinal history. J. Chem. Educ. 2013,  

90, 1403. 

52. Tishler, M.; Pfister, K.; Babson, R.D.; Ladenburg, K.; Fleming, A.J. The reaction between  

o-aminoazo compounds and barbituric acid. A new synthesis of riboflavin. J. Am. Chem. Soc. 

1947, 69, 1487–1492.  

53. Yoneda, F.; Sakuma, Y.; Ichiba, M.; Shinomura, K. Syntheses of isoalloxazines and isoalloxazine 

5-oxides. A new synthesis of riboflavin. J. Am. Chem. Soc. 1976, 98, 830–835. 

54. Cresswell, R.M.; Hill, A.C.; Wood, H.C.S. 140. Pteridine derivatives. Part VII. The synthesis of 

riboflavin 2-imine and related isoalloxazine 2-imines. J. Chem. Soc. 1959, 698–704. 

55. Cresswell, R.M.; Neilson, T.; Wood, H.C.S. Pteridine Derivatives. Part VI11. A new synthesis of 

riboflavin and related isoalloxaxines. J. Chem. Soc. 1961, 476–477.  

56. Villemin, D.; Martin, B. Synthesis of quinoxalines under focussed microwave irradiation.  

Synth. Commun. 1995, 25, 2319–2326.  

57. Karrer, P.; Meerwein, H.F. Ein emodifizierte Flavinsynthese. Helv. Chim. Acta 1935, 18, 1130–1134. 

http://www.sciencedirect.com/science/article/pii/S0014299904003000
http://www.sciencedirect.com/science/article/pii/S0014299904003000
http://www.sciencedirect.com/science/article/pii/S0960894X06012844
http://www.sciencedirect.com/science/article/pii/S0960894X06012844
http://pubs.acs.org/doi/abs/10.1021/jm00110a009
http://pubs.acs.org/doi/abs/10.1021/jm00110a009
http://pubs.acs.org/doi/abs/10.1021/ja01198a068
http://pubs.acs.org/doi/abs/10.1021/ja01198a068
http://pubs.acs.org/doi/abs/10.1021/ja00419a034
http://pubs.acs.org/doi/abs/10.1021/ja00419a034
http://pubs.rsc.org/en/content/articlelanding/1959/jr/jr9590000698
http://pubs.rsc.org/en/content/articlelanding/1959/jr/jr9590000698


Molecules 2014, 19 9759 

 

 

58. Hunziker, F.; Kunzle, F.; Schmutz, J.; Schindler, O. Dibenzo-azepine,-diazepine,-oxazepine  

und-thiazepine. 3. Mitteilung über siebengliedrige Heterocyclen. Helv. Chim. Acta 1964, 47,  

1163–1172.  

59. Hunziker, F.; Fischer, E.; Schmutz, J. 11-Amino-5H-dibenzo[b,e]-1,4-diazepine. 10. Mitteilung 

über siebengliedrige Heterocyclen. Helv. Chim. Acta 1967, 50, 1588–1599. 

60. Schmutz, J.; Kunzle, F.; Hunziker, F.; Gauch, R. Über in 11-Stellung aminosubstituierte 

Dibenzo[b,f]-1,4-thiazepine und -oxazepine. 9. Mitteilung über siebengliedrige Heterocyclen. 

Helv. Chim. Acta 1967, 50, 245–254. 

61. Rampe, D.; Triggle, D.J. Benzodiazepines and calcium channel function. Trends Pharmacol. Sci. 

1986, 5, 461–464. (and references therein) 

62. Nutt, D. Benzodiazepine dependence in the clinic: Reason for anxiety? Trends Pharmacol. Sci. 

1986, 7, 457–460. (and references therein) 

63. Richter, L.; de Graaf, C.; Sieghart, W.; Varagic, Z.; Mörzinger, M.; de Esch, I.J.P.; Ecker, G.F.; 

Ernst, M. Diazepam-bound GABAA receptor models identify new benzodiazepine binding-site 

ligands. Nat. Chem. Biol. 2012, 8, 455–464. 

Sample Availability: Not available. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 

http://onlinelibrary.wiley.com/doi/10.1002/hlca.19640470508/abstract
http://onlinelibrary.wiley.com/doi/10.1002/hlca.19640470508/abstract

