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Abstract

We prove risk bounds for halfspace learning when the data dimensionality is allowed to
be larger than the sample size, using a notion of compressibility by random projection. In
particular, we give upper bounds for the empirical risk minimizer learned efficiently from
randomly projected data, as well as uniform upper bounds in the full high-dimensional
space. Our main findings are the following: i) In both settings, the obtained bounds are
able to discover and take advantage of benign geometric structure, which turns out to
depend on the cosine similarities between the classifier and points of the input space, and
provide a new interpretation of margin distribution type arguments. ii) Furthermore our
bounds allow us to draw new connections between several existing successful classification
algorithms, and we also demonstrate that our theory is predictive of empirically observed
performance in numerical simulations and experiments. iii) Taken together, these results
suggest that the study of compressive learning can improve our understanding of which
benign structural traits – if they are possessed by the data generator – make it easier to
learn an effective classifier from a sample.

1. Introduction

Given a ‘hypothesis class’ of functions, H, and a training set of N observations T N =
{(xn, yn) : (xn, yn)

i.i.d∼ D}Nn=1, where D is an unknown distribution over X ×Y,X ⊆ Rd,Y =
{−1, 1}, the goal in binary classification is to use the training data to learn a function
(classifier) ĥ ∈ H such that, with respect to some specified loss function `, its generalization
error (or risk):

E[` ◦ ĥ] := E(x,y)∼D[`(ĥ(x), y)|T N ] (1)

is as small as possible. For binary classification the function ` : Y×Y → {0, 1}, `(ĥ(x), y) =
1(ĥ(x) 6= y), called the zero-one loss, is the main error measure of interest (Nguyen
& Sanner, 2013). Here 1(·) denotes the indicator function which returns one if its ar-
gument is true and zero otherwise. The optimal classifier in H is denoted by h∗ :=
arg min
h∈H

E(x,y)∼D[`(h(x), y)].

In this work we consider functions of the form H := {x → sign (hTx) : h ∈ Rd, x ∈
X}, that is, H is identified with the set of normals to hyperplanes which, without loss of
generality (since otherwise we can always concatenate a 1 to all inputs and work in Rd+1

instead of Rd), pass through the origin.
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As D is unknown, one cannot minimize the generalization error directly. Instead, we
have access to the empirical error over the training set – the minimizer of which is the
Empirical Risk Minimizer or ERM classifier, ĥ := arg min

h∈H

1
N

∑N
n=1 `(h(xn), yn).

Let R ∈ Rk×d, k ≤ d be an instance of a random matrix either (1) with i.i.d zero-mean
Gaussian or subgaussian entries, or (2) such that, with probability 1, the columns of RT

form an orthonormal basis for some k-dimensional subspace of Rd selected uniformly from all
such possible bases. Such matrices are commonly called Random Projection (RP) matrices
– we will call matrices of type (1) either Gaussian or subgaussian RP matrices respectively,
and those of type (2) Haar RP matrices1. A convenient way to think about R is as a
means of compressing or ‘sketching’ the training data, and to carry out the compression
we simply sample a single random RP matrix R of a particular kind and then left multiply
the training observations with it. The celebrated Johnson-Lindenstrauss lemma and its
variants guarantee that with high probability, such sketching has low distortion under mild
conditions on the projection dimension, k (Johnson & Lindenstrauss, 1984; Achlioptas,
2003; Matoušek, 2008).

Now let T NR = {(Rxn, yn)}Nn=1 denote the RP of the training set, so the input points
Rxn are now k-dimensional. The hypothesis class defined on such k-dimensional inputs will
be denoted by HR := {Rx → sign (hTRRx + b) : hR ∈ Rk, b ∈ R, x ∈ X}. Other analogous
notations will be used in the k-dimensional space: h∗R = arg min

hR∈HR
E[` ◦ hR] denotes the

optimal classifier in HR, and ĥR = arg min
hR∈HR

1
N

∑N
n=1 `(hR(Rxn), yn) is the ERM in HR. For

any particular instance of R the learned ERM classifier in the corresponding k-dimensional
subspace ĥR is possibly not through the origin, but any non-zero translation b will not affect
our proof technique.

The generalization error of ĥR is the following random variable that depends on both
T N and R:

E[` ◦ ĥR] := E(x,y)∼D

[
`(ĥR(Rx), y)|T N , R

]
(2)

The remainder of this paper is concerned with the following two questions:

1. In terms of classification error, if we work with an RP sketch of the data how much, if
anything, does it cost us? We made a start on this line of enquiry in preliminary work
(Durrant & Kabán, 2013), which here we improve, simplify, and expand in Section 2.

2. What do the insights gained about learning from randomly projected data tell us
about the original uncompressed learning problem, in terms of characteristics that
make one instance of the problem easier than another? This is the subject of Section
3.

Although these two questions serve rather different goals, we propose to use similar tech-
niques to approach both of them. The first of these questions resembles a model selection
problem, namely the trade-off between loss minimization and model complexity. Further-
more it is also of more recent interest from the viewpoint of managing computational (time

1. We note that Haar RP matrices can be conveniently constructed by first generating an instance of a
Gaussian RP matrix R and then either left multiplying it with (RRT )−1/2 so that R′ := (RRT )−1/2R is
a Haar RP matrix, or else by carrying out Gram-Schmidt orthogonalization on the rows of R.
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and space) complexity in high dimensional data analysis. Meanwhile the second of these
questions targets another fundamental open problem concerning what properties make data
easier or harder to learn from? Although both questions are difficult to approach in full
generality, our findings here indicate that answers to the first question can facilitate answers
to the second.

1.1 Related Work and Motivation

The use of RP in machine learning has a long history, most commonly as an efficient
means to reduce computational and storage demand. Amongst the earliest works, Arriaga
and Vempala (1999) gave generalization error bounds for the linear perceptron on randomly
projected data, assuming that the class-conditional supports are separable by a hard margin.
Their proof techniques combined the Johnson-Lindenstrauss lemma with union bounds and
in order to control the generalization error following random projection, a target dimension
that grows with the log of the sample size was required. In a different vein, Bǎlcan, Blum,
and Vempala (2006) used RP to give an alternative interpretation for the kernel trick; they
also assume a priori that the data classes are separated by a soft margin, i.e that the region
between the classes has a low density with respect to both classes.

For learning in the original data space, Garg, Har-Peled, and Roth (2002) considered
RP as an analytic tool, with similar aims to our Section 3. Unfortunately an error in the
proof in that paper makes the findings incomplete and inconclusive. In Theorem 6 of Kabán
(2019) we presented a corrected proof of the main result of Garg et al. (2002), however we
were only able to reproduce its conclusion under an additional strong assumption that needs
to hold with probability 1 for every training set of a given size. Besides which, even the
originally stated generalization bound in (Garg et al., 2002) is generally trivial i.e. is greater
than 1. In a follow-on experimental paper (Garg & Roth, 2003), the authors proposed an
algorithm which learns a classifier by minimizing a heuristic simplification of the bound
in (Garg et al., 2002) since the original was too loose to be of practical use. However, no
theoretical guarantees have been given for the resulting algorithm.

Several years later, some spectacular advances in the area of compressed sensing (CS)
revived interest in RP for machine learning, and the term ‘compressive learning’ was coined
(Calderbank, Jafarpour, & Schapire, 2009). The works of Calderbank et al. (2009) and
Fard, Grinberg, Pineau, and Precup (2012) gave guarantees for compressive learning of
SVM and ordinary least square regression respectively, under the assumption that the data
have a sparse representation. This assumption gave them access to tools from CS, which
get around some of the problems seen in early works (Arriaga & Vempala, 2006). However,
the guarantees obtained in this way cease to hold when the data do not admit a sparse
representation in some basis. Indeed, we have no reason to believe that a sparse represen-
tation of the data is necessary for compressive learning to succeed. In fact, several works
have studied compressive learning in specific generative parametric families that do not
require a sparse representation of the data. In particular, the compressive Fisher’s Lin-
ear Discriminant classifier has been analyzed (Durrant & Kabán, 2010), and more recently
non-linear compressive classifiers have also been studied (Reboredo, Renna, Calderbank, &
Rodrigues, 2016) under the assumption of Gaussian classes. Moreover, the sparse represen-
tation assumption also turned out to be unnecessary for compressive ordinary least squares
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regression (Kabán, 2014), as it transpires that one can exploit the structure of the prob-
lem to obtain informative bounds without the need to retain assumptions from compressed
sensing.

In 2013 we began a new line of inquiry on compressive classification (Durrant & Kabán,
2013), and derived the exact probability of label flipping under Gaussian RP, which we used
to give tight upper bounds on the generalization error of a randomly-projected linear ERM
classifier without any distributional assumptions on the data generator, and no margin or
sparse representation requirements. Those results are the starting point of the present paper
in the next section 2.

This paper develops a more complete analysis of linear classification in the high-dimensional,
small sample size setting, with new results addressing both the compressive, and the origi-
nal uncompressed problems, which we treat as two sides of the same coin. A large part of
this paper is devoted to discussing the implications of this view. Our focus on linear models
stems from two motivations: analytical tractability, and fundamental importance. Indeed,
linear models have been a central object of study in statistical learning at all times (Vapnik,
1998; Kawaguchi, Kaelbling, & Bengio, 2019), as well as in compressed sensing (Donoho,
2006), and better understanding of such models has laid some of the main foundations for
successful machine prediction.

It is well known from classical VC theory that, for linear classification in the agnostic
setting, in the absence of any assumptions other than i.i.d. sampling of the data generator,
the difference between the generalization error and the empirical error of a linear function
class is of the order Θ(

√
d/N) (Bartlett & Mendelson, 2002; Devroye & Lugosi, 1995),

where d is the dimensionality of the feature representation and N is the sample size, so for
meaningful guarantees – when we are agnostic about the properties of the data generator
and its domain – we need the sample size N be of order d. However, often in practice we
are faced with settings where d > N , and in this setting the VC bounds are clearly vacuous.
Many approaches have been proposed to obtain non-vacuous bounds, including sparsity
priors, low rank assumptions, margin maximization, and others – all of which assume, in
some form, that the problem has a known simpler structure, which is specified beforehand.
Our goal here is to obtain generalization bounds of a similar flavour, but without the need
to pre-specify the form of structure expected to be present. We do this by exploiting the
structure preserving ability of RPs, which is universal in the sense that it is oblivious to the
data, so we can capture a range of structures without knowing what they are, by a notion
of robustness to the perturbations created by RP.

Finally, we should mention the relevance of some very recent and ongoing debate about
the puzzle of overparameterized models, in which linear models (d > N) are also being
studied (Bartlett, Long, Lugosi, & Tsigler, 2019; Nagarajan & Kolter, 2019). A key result
of Nagarajan and Kolter (2019) shows that in such settings, generalization bounds based on
uniform convergence remain vacuous even if the biases of the optimizer are fully exploited.
Other new findings (Negrea, Dziugaite, & Roy, 2019) indicate that it may still be possible
to explain generalization via uniform convergence provided a suitable ‘surrogate learning
algorithm’ may be constructed. In that context, our use of RP based compression may be
viewed as a means by which to construct such a surrogate learning algorithm2. At a high

2. We thank an anonymous referee for pointing out this connection.
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level the core idea here is that, despite d � N , a particular (representation of a) learning
problem may have a simple, compressible, structure and for the compressed representation of
the problem uniform convergence may indeed yield informative generalization error bounds
for the original uncompressed problem.

2. Risk Bounds for the Compressive ERM Classifier

In this section we consider learning by Empirical Risk Minimization (ERM) from data that
is available only in randomly projected form, such as that captured by compressive sensing
devices, or because e.g. practical considerations make the original high-dimensional data too
onerous to work with. This section also serves to introduce the necessary foundations that
will be built upon in the subsequent section 3. Furthermore, Section 2.1.1 will shed some
light on the effect of sparse representation of the data and other structures that potentially
make learning ‘easy’.

We start by extending our previous result (Durrant & Kabán, 2013) – which originally
concerned only Gaussian random projection – to allow sub-Gaussian families of RP matrices,
while we also simplify our arguments.

Let R be a RP matrix of size k × d, with k ≤ d. We shall denote by θhu the angle
between two vectors h, u ∈ Rd, and let f+k (θhu) := fk(θ

h
u) · 1(hTu > 0), where fk(θ

h
u) =

PrR
{
hTRTRu ≤ 0

}
. That is, if we now identify h with the normal to some classifying

hyperplane in Rd and likewise identify u := xy for some observation (x, y) ∈ Rd × {−1, 1}
then f+k (θhxy) signifies how likely it is that a point x flips from the correct side of the decision
boundary of classifier h to the wrong side after RP (or vice-versa). This quantity will be
our basic tool for telling us what happens to correct label predictions after a RP.

With the notations and definitions just introduced, we have the following result which
holds with any zero-mean subgaussian matrix R:

Theorem 2.1. For any δ ∈ (0, 1), the following holds for the compressive linear ERM

classifier ĥR with probability 1− 2δ:

Prx,y[(ĥTRRx+ b)y ≤ 0] ≤ Prx,y[h∗Txy ≤ 0] + c

√
k + 1 + log(1/δ)

N
...

+ Ex,y[f+k (θh
∗

xy)] + min

{
1− δ
δ
· Ex,y[f+k (θh

∗

xy)],

√
1

2
log

1

δ

}

where c > 0 is a universal constant, independent of d and N .

We should observe the main features of the bound. The VC complexity term ofO(
√
d/N)

is reduced to O(
√
k/N) at the price of terms that represent the error incurred by working

in a random subspace projection of the data.
We have so far not specified the distribution of R, and we shall see that the proof does

not require this specification as long as f+k (θ) can be controlled. Conceptually it is useful
to think about R as a matrix that orthogonally projects the data into a lower dimensional,
uniformly randomly oriented subspace Rk. As k grows towards d, then the probability
of flipping across the boundary decreases to zero. Hence f+k (θ) decreases towards zero
so the last two terms on the r.h.s. vanish – consequently, Theorem 2.1 approaches the
classical VC bound for the original d-dimensional ERM classifier. Moreover, suppose the
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data distribution is supported in a fixed but arbitrary subspace Rm ⊆ Rd, m < d – then
the probability of flipping will be zero provided Rm ⊆ Rk, so again increasing k to m will
reduce the last two terms on r.h.s towards zero.

Proof of Theorem 2.1. For a fixed instance of R, we apply a classical VC bound (Bartlett
& Mendelson, 2002, Theorem 1): For any δ ∈ (0, 1) w.p. 1 − δ over the random draws of
the training set, the following holds uniformly for all hR ∈ Rk:

Prx,y[(h
T
RRx+ b)y ≤ 0] ≤ 1

N

N∑
n=1

1((hTRRxn + b)yn ≤ 0) + c

√
k + 1 + log(1/δ)

N
(3)

for some absolute constant c > 0.

This implies that the ERM classifier ĥR satisfies the following:

Prx,y[(ĥ
T
RRx+ b)y ≤ 0] ≤ Prx,y[(h

∗T
R Rx+ b∗)y ≤ 0] + 2c

√
k + 1 + log(1/δ)

N
(4)

and one can absorb the factor 2 into c.

Since (h∗R, b
∗) is optimal in Rk+1, its error is upper bounded by the error of the optimal

homogeneous classifier, which we denote by h∗
′
R ∈ Rk:

Prx,y((h
∗T
R Rx+ b∗)y ≤ 0) ≤ Prx,y(h

∗′T
R Rxy ≤ 0)

≤ Prx,y(h
∗TRTRxy ≤ 0)

≤ Ex,y[1(h∗TRTRxy ≤ 0) · 1(h∗Txy > 0)]︸ ︷︷ ︸
T

+Prx,y(h
∗Txy ≤ 0)

where we used the fact that both h∗
′
R ∈ Rk and Rh∗ ∈ Rk are elements of the same k-

dimensional linear subspace R(Rd) ≡ Rk.
We then bound T from its expectation using a combination of Höffding and Markov

inequalities. Indeed, since T ∈ [0, 1], by the Höffding bound it holds for any ε > 0 that:

Pr{T > ER[T ] + ε} 6 exp
(
−2ε2

)
(5)

which implies w.p at least 1− δ:

T 6 ER[T ] +

√
1

2
log

1

δ
(6)

Noting that T is a positive random variable, smaller values should imply smaller deviations.
This is not reflected by eq. (6), hence we combine this with a Markov inequality, which is
tighter for small ER[T ] – while the Höffding bound is tighter for small values of δ. From
Markov’s inequality we have:

T 6 ER[T ] · 1− δ
δ

(7)

Taking the minimum of these two bounds in eqs. (6) and (7) completes the proof.
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We now discuss the choice of the distribution of R. If R has i.i.d. Gaussian entries, then
it is rotationally invariant, and based on this property the exact expression of f+k (θ) has
been computed (Durrant & Kabán, 2013). When d � k, such Gaussian RP is also known
to be a good approximation of the Haar RP, i.e. a uniformly randomly oriented orthogonal
projection, thanks to the concentration of measure. However, for implementing compres-
sive classifiers, certain sub-Gaussian random projection matrices R can be computationally
cheaper (Achlioptas, 2003) and hence may be preferable in practice. Rotational invariance
then no longer holds exactly, but it still holds approximately (Vershynin, 2018), and Lemma
2.2 below will exploit this to establish the applicability of Theorem 2.1 to the whole family
of random matrices with i.i.d. sub-Gaussian entries by controlling f+k (θ).

Lemma 2.2 gives the relevant expressions needed for computing or upper bounding the
term f+k (θ) needed in the bound of Theorem 2.1. Parts (a) and (b) both follow from our
earlier work (Durrant & Kabán, 2013; Kabán, 2015, Corollary 3.1.) however, for complete-
ness we include new proofs in Appendix A, as we found simple ways to show how these
expressions arise.

Lemma 2.2 (Flipping probability). Let h, x ∈ Rd, and let θ = θhx ∈ [0, π) be the angle
between them. Let R be a RP matrix, and let Rh,Rx ∈ Rk be the images of h, x under R.
Then the following hold:

(a) If R has entries rij
i.i.d∼ N (0, σ2), we have for hTx 6= 0,

fk(θ) := Pr
{

(Rh)TRx ≤ 0
}

=
Γ(k)

(Γ(k/2))2

∫ 1−cos(θ)
1+cos(θ)

0

z(k−2)/2

(1 + z)k
dz (8)

Pr

{
(Rh)TRx

hTx
≤ 0

}
= fk(θ) · 1(hTx > 0) + (1− fk(θ)) · 1(hTx < 0) (9)

≤ exp(−k cos2(θ)/2) (10)

(b) If R has i.i.d. sub-Gaussian entries, and hTx 6= 0, we have:

Pr

{
(Rh)TRx

hTx
≤ 0

}
≤ exp(−k cos2(θ)/8) (11)

To develop more intuition, Figure 1 provides a visualization of the numerical evaluations
of fk(θ) from eq. (8). Note that it depends only on the angle between a pair of vectors and
the projection dimension k, it is independent of the dimensionality of the data, d.

The inequalities of Lemma 2.2 reveal, for instance, that the probability that a point
flips to the wrong side of the decision hyperplane decreases exponentially not only with
increasing k but also with the square of the cosine similarity of the point with h∗. Therefore,
taken together Theorem 2.1 and Lemma 2.2 discover that data distributions that have
more probability mass at regions where points have large cosine (i.e. large normalized
margin) w.r.t. h∗ are more benign for compressive classification. This is consistent with
margin distribution bounds in learning theory (Shawe-Taylor & Cristianini, 1999), and we
should note that no sparse representation is required for the compressive learning guarantee
provided by Theorem 2.1.

7



Kabán & Durrant

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Angle θ (radians)

F
lip

p
in

g
 p

ro
b

a
b

ili
ty

 f
k
(θ

)

Flipping probability for Gaussian RP: k ∈ {1   5  10  15  20  25}

 

 

k=1

k=5

k=10

k=15

k=20

k=25

Figure 1: Illustration of the function fk(θ) from eq. (8) in Lemma 2.2
.

In fact, an appealing advantage of RP-based dimension reduction is its universality: The
structure preserving ability of RP makes the subsequent classifier adapt to all structures
that ensure low distortion, without needing prior knowledge of what these structures might
be, without needing a separate treatment for each. Indeed, we already mentioned two
different structures that reduce flip rates – the case when the data lives in a low-dimensional
subspace, and the case when the class-conditional supports of the distribution are separated
by a margin – both of which tighten our generalization guarantee, essentially for free.

For learning from RP-ed data, we may also use the bounds from Lemma 2.2 to deduce
the required value of k that ensures that the contribution to the risk from flip probabil-
ities remains (with high probability) below some user-specified threshold ε. From Theo-
rem 2.1 combined with Part (b) of Lemma 2.2, if the classes are separable with a margin
infx∈X cos(θh

∗
xy) > 0, then for any small ε > 0, the last two terms on the r.h.s. in Theorem

2.1 will be below ε for:

k ≥ 8 log(1/(εδ))

infx∈X cos2(θh∗xy)
. (12)

The case of zero margin can also be accommodated, as it is easy to modify the proof of
Theorem 2.1 by artificially introducing a margin parameter γ > 0, which yields the following
corollary.

Corollary 2.2.1. Fix some γ > 0. Let R be a k × d subgaussian random matrix with
i.i.d. entries, k ≤ d, and denote fγk (θhu) := fk(θ

h
u) · 1(cos(θhu) > γ). For any δ ∈ (0, 1), the

following holds for the compressive linear ERM classifier ĥR with probability 1− 2δ:

Prx,y{(ĥTRRx+ b)y ≤ 0} ≤ Ex,y[1{cos(θh
∗
xy) ≤ γ}] + c

√
k + 1 + log(1/δ)

N
...

+ Ex,y[f
γ
k (θh

∗
xy)] + min

{
1− δ
δ
· E[fγk (θh

∗
xy)],

√
1

2
log

1

δ

}
where c > 0 is a universal constant, independent of d and N .
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Hence, by a similar argument, setting k ≥ 8 log(1/(εδ))
γ2

is sufficient to guarantee that the
last two terms in Corollary 2.2.1 are below a threshold of ε.

2.1 What If the Data Has a Sparse Representation?

Recall that compressive learning guarantees, inspired by the compressed sensing (CS) lit-
erature, relied heavily on techniques that assume that the input data has a sparse repre-
sentation. Yet, we have just demonstrated that a sparse representation is not a necessary
condition for good generalization from compressive data. One may wonder then, where
do such sparse representation conditions fit into this picture? In which ways does sparsity
facilitate learning?

To address this question, we look at what properties of the data could ensure that with
high probability no flipping events occur? This is rather a strong requirement: we are
asking for conditions on the data generator such that (all other things being equal) with
high probability learning from RP-ed data incurs no reduction in classification performance.

Now, since we work with the zero-one loss directly, we can take all h ∈ H and x ∈ X to
have unit norm without any loss of generality. Therefore let:

U :=

{
xy

‖x‖
: x ∈ X , y ∈ {−1, 1}

}
. (13)

Then for any h ∈ H, we define the margin of h to be γh := infu∈U cos(θhu). We further
define, for any fixed γ and h, the following set:

T+
h,γ :=

{
u ∈ U : cos(θhu) ≥ γ

}
⊂ Sd−1; where γ > 0 (14)

Thus, the set T+
h,γ defined above is the set of all points in the support X of the underlying

(unknown) input data distribution that the high dimensional vector h ∈ H classifies cor-
rectly with a pre-specified margin of at least γ. Note, however, that we are not requiring
the data support of the classes to have a margin, nor to be linearly separable.

With these definitions in place, the following theorem gives a condition on the com-
pressed dimension k that ensures a risk guarantee for the compressive linear ERM classifier
with a similar flavour to either margin bounds or VC bounds for a k (rather than d) dimen-
sional dataspace classifier. As we shall see in Theorem 2.3 below, this condition depends on
the geometric structure of the problem, which will be reflected by the so-called Gaussian
width of the set T+

h∗,γ .

Definition 1. (Vershynin, 2018) The Gaussian width of a set T is defined as:

w(T ) := Eg∼N (0,I)[sup
x∈T

gTx]. (15)

Theorem 2.3. Let R be a k × d, k ≤ d (isotropic) subgaussian random matrix with inde-
pendent rows each having subgaussian norm bounded as ‖Ri‖ψ2

≤ K. Fix some γ > 0 large
enough that γ ≥ γh∗. Then, for any δ > 0 there are absolute constants C, c > 0 such that
with probability 1−2δ the generalization error of the compressive linear ERM classifier, ĥR,
is bounded as the following:

Prx,y[(ĥ
T
RRx+ b)y ≤ 0] ≤ Ex,y

[
1
(

cos(θh
∗
xy) < γ

)]
+ c

√
k + 1 + log(1/δ)

N
(16)

9
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provided that k ≥ CK4
(
w(T+

h∗,γ) +
√

log(1/δ)
)2
γ−1.

In the special case when h∗ has a margin and T+
h∗,γ = T+

h∗,γh∗
then the empirical risk on

the compressive classifier for the required k incurs no increase in error from the compression,
and has a guarantee as strong as that for a k-dimensional dataspace classifier, regardless of
the dimensionality of the original data.

On the other hand, if h∗ has no positive margin, then γh∗ = 0, but γ > 0 ensures
that the bound still holds, in the same way as in Corollary 2.2.1. However, the last two
terms from Corollary 2.2.1 have now disappeared due to the more stringent requirement
of no flipping, which is ensured (with high probability) by the target dimension k in the
statement of Theorem 2.3. Observe furthermore that, despite this stringent requirement,
the bound of Theorem 2.3 does still not explicitly depend on the dimension d of the original
data, but only through k. This is where the effect of sparse representation of the input data
will become apparent – indeed, as we shall see shortly, one example where O(k) is less than
d is when the data has a sparse representation.

2.1.1 Examples when O(k) < d

As T+
h∗,γ ⊆ Sd−1 we always have w(T+

h∗,γ)2 ≤ d. This follows e.g. from (Vershynin, 2018,

Prop. 7.7.2). Equality holds if T+
h∗,γ is the whole d-dimensional hypersphere, and it can be

much less than d when the data support has a simpler structure, such as the following:

• If h∗ has a large margin for the points of the data support that don’t contribute to
the empirical error term, then w(T+

h∗,γ) reduces. To see this, note that, if the correctly
classified datapoints are concentrated around the antipodes of the unit sphere and h∗

is roughly in the direction of the north pole (say) – so that it has a large margin –
then T+

h∗,γ is contained in a spherical cap making a small angle φ := arccos(γh∗) at
the origin, while if the margin of h∗ is small then φ for the spherical cap containing
T+
h∗,γ is larger. As shown by Amelunxen et al. (2014) and Bandeira et al. (2017), the

squared Gaussian width of a spherical cap is d(1− cos2(φ)) +O(1). Observe also that
the vector h∗ that reduces this quantity also increases the margin, cos(θh

∗
xy).

• If the data lives in an s-dimensional subspace, then [w(T+
h∗,γ)]2 is of order O(s) rather

than O(d).

• If the data has a sparse representation, i.e. its support lives in a union of disjoint s-
dimensional subspaces, then the squared Gaussian width of the support of the classes
is of order Θ(s log(2d/s)) (Plan & Vershynin, 2013, Lemma 3.5). Here we use the
facts that the intersection of the length-normalized data support with the unit sphere
is then a union of disjoint (s− 1)-spheres, the Gaussian width of a sphere is the same
as that of a ball, and T+

h∗,γ is a subset of the projection of the support onto the unit

sphere, so its squared Gaussian width [w(T+
h∗,γ)]2 is no larger.

• If the optimal classifier vector h∗ is sparse, this will reduce the contribution of the
Gaussian width term to the error bound. However, interesting to note that in the case
when irrelevant noise features exist, then even a sparse h∗ cannot completely circum-
vent their bad effect on compressive classification. Indeed, even though [w(T+

h∗,γ)]2 is

10



reduced in this way, the noise components increase ‖x‖ in the denominator of the co-
sine, so the empirical error term will still tend to increase with the extent of irrelevant
features.

More examples of structured sets exist of course, as there are many ways in which the
data may not ‘fill’ the full d-dimensional space. Our generic bound captures the effect of
these structures on the compressive classifier performance without the need of prior knowl-
edge of the particular structure that might be present. This explains, for instance, why
a drastic random compression still works surprisingly well in practice for face recognition
(Goel, Bebis, & Nefian, 2005) but not so well on difficult data sets that contain large
amounts of unstructured noise (Xie, Li, Zhang, & Wang, 2016).

To prove Theorem 2.3, we need the following lemma.

Lemma 2.4. (Uniform bound on sign flipping) Fix h ∈ Rd, ‖h‖ = 1 w.l.o.g. Let R be
an isotropic subgaussian random matrix with independent rows having subgaussian norm
bounded as ‖Ri‖ψ2

≤ K. Let T+
h,γ be as defined in eq. (14). Then, for any fixed h,

∀δ ∈ (0, 1), w.p. 1− δ w.r.t. draws of R,

PR

{
∃u ∈ T+

h,γ : hTRTRu ≤ 0
}
< δ (17)

provided that k ≥ CK4
(
w(T+

h,γ) +
√

log(2/δ)
)2
/γ for some absolute constant C.

Proof of Lemma 2.4. By the parallelogram law,

−h
TRTRu

k
=

1

4k

(
‖R(h− u)‖2 − ‖R(h+ u)‖2

)
=

1

4

(
‖R(h− u)‖2

k
− ‖h− u‖2

)
− 1

4

(
‖R(h+ u)‖2

k
− ‖h+ u‖2

)
− hTu

Now each of the brackets is an empirical process, and we can make use a the following
result (Liaw, Mehrabian, Plan, & Vershynin, 2017, Theorem 1.4) that bounds the suprema
of such processes3.

Theorem (Liaw et al., 2017). Let R be an isotropic subgaussian random matrix with
independent rows having subgaussian norm bounded as ‖Ri‖ψ2

≤ K. Let T be a bounded

subset of Rd, and denote its radius by rad(T ) = supu∈T ‖u‖. Then there is an absolute
constant C s.t. with probability 1− δ w.r.t. the random draws of R,

sup
u∈T

∣∣∣∣∣‖Ru‖22k
− ‖u‖22

∣∣∣∣∣ ≤ 1

k

[
C2K4

(
w(T ) + rad(T)

√
log(1/δ)

)2
+ 2CK2rad(T )

(
w(T ) + rad(T )

√
log(1/δ)

)√
k
]

(18)

3. This result is an improvement on seminal work by Klartag and Mendelson (2005) that first connected
random projections with empirical processes.

11
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Denoting by V (T ′, δ)/k the r.h.s. of eq. (18), where T ′ is the set whose Gaussian width
appears in it, we get w.p. 1− 2δ:

sup
u∈T+

h,γ

[
−h

TRTRu

k

]
≤
V (T+

1,h,γ , δ)

4k
+
V (T+

2,h,γ , δ)

4k
− γ (19)

where

T1 = {h− u : u ∈ T+
h,γ}; T2 = {h+ u : u ∈ T+

h,γ} (20)

Now, since h is a fixed vector, and the Gaussian width is invariant to translation, w(T1) =
w(T2) = w(T+

h,γ).
We need to require that the r.h.s. of eq. (19) is non-positive. Since ‖h‖ = ‖u‖ = 1, and

hTu = cos(θhu) ≥ γ, this is equivalent to requiring that:

V (T+
h,γ , δ)

2k
≤ γ (21)

Hence, for

k ≥
V (T+

h,γ , 2δ)

2γ
=

Ω(w(T+
h,γ)2)

γ
(22)

we have the statement of Lemma 2.4, noting again that by definition T+
h,γ is a set of unit

vectors, so its radius is 1.

Proof of Theorem 2.3. For a fixed instance of R, we have the uniform VC bound of eq. (4).
We upper bound the error of the optimal classifier in Rk+1 as the following:
Prx,y((h

∗T
R Rx+ b∗)y ≤ 0) ≤ ...

... ≤ Prx,y(h
∗TRTRxy ≤ 0)

= Ex,y[1
(
h∗TRTRxy ≤ 0

)
− 1

(
cos(θh

∗
xnyn) ≤ γ

)
] + Prx,y

(
cos(θh

∗
xy) ≤ γ

)
= Ex,y[1

(
h∗TRTRxy ≤ 0

)
1
(

cos(θh
∗
xy) > γ

)
− 1

(
h∗TRTRxy > 0

)
1
(

cos(θh
∗
xy) ≤ γ

)
] + Prx,y

(
cos(θh

∗
xy) ≤ γ

)
≤ Ex,y[1

(
h∗TRTRxy ≤ 0

)
1
(

cos(θh
∗
xy) > γ

)
] + Prx,y

(
cos(θh

∗
xy) ≤ γ

)
]

Now, by Lemma 2.4, for the stated k the the first term on the r.h.s. is zero w.p. 1− δ. This
completes the proof.

3. From Random Projections Back to the Dataspace: Geometry-Aware
Error Bounds with the Zero-One Loss

With the insights gained regarding the ability of RP to exploit benign geometry for com-
pressed classification, it is natural to wonder if a similar approach is possible to better un-
derstand the original high dimensional classification problem. If so, this would yield more

12



informative bounds that can predict generalization performance from quantities computed
on the training set.

We will not assume a priori knowledge of properties of the data generator to prime
the analysis, but instead we will let RP, as an analytical tool, capture and discover any
beneficial structure automatically. We will evaluate the success of this strategy in terms
of how informative or predictive of generalization performance are the bounds so obtained.
We note that any positive outcomes could also be indicative of some potentially wider
applicability of such an RP-based approach.

Throughout this section, let R be a k × d, k ≤ d, rotation-invariant random matrix,
such as a random matrix having i.i.d. zero-mean Gaussian entries. That is, R is a random
projection (RP) just as in the previous Section 2, but instead here it will serve as an
analytical tool rather than as a method for dimension reduction. Due to this change of
scope, we no longer need to take computational efficiency into consideration, and we will
consider ourselves free to make the choice concerning the distribution of the entries of R
for analytical convenience.

Again, as in Section 2, θhu will denote the angle between the d-dimensional vectors u and
h, and fk(θ

h
u) := PrR((Rh)TRu ≤ 0).

3.1 Risk Bounds for Dataspace Classification

We start by decomposing the risk into a distortion term that consists of the expected
absolute difference between the value of the zero-one loss before and after random projection,
plus the error on the compressed classification:

Prx,y[h
Txy ≤ 0] ≤ Ex,y

∣∣1(hTxy ≤ 0)− ER[1(hTRTRxy ≤ 0)]
∣∣+ Ex,y,R[1(hTRTRxy ≤ 0)]

(23)
The distortion term will measure the compressibility of the problem, i.e. to what extent the
data geometry would allow the high dimensional problem to be solvable in lower dimension.
We can further re-write this latter term as the following:

Ex,y
∣∣1(hTxy ≤ 0)− ER[1(hTRTRxy ≤ 0)]

∣∣
= Ex,y

[
(1− fk(θhxy)) · 1(hTxy ≤ 0) + fk(θ

h
xy) · 1(hTxy > 0)

]
Plugging back, for Gaussian R the r.h.s. of eq. (23) becomes:

Ex,y[1(hTxy ≤ 0) + 2fk(θ
h
xy)1(hTxy > 0)] = Ex,y[min(1, 2fk(θ

h
xy))] (24)

Eq. (24) holds for any k and any h, x ∈ Rd, y ∈ {−1, 1}, sinceR was chosen to be rotationally
invariant. Indeed, for the i.i.d. Gaussian R, we can read this off directly from the integral
representation of fk in eq. (8). There are three cases: First, notice that fk(π/2) = 1/2
for any k – that is, a point on the decision boundary has probability 1/2 to flip across.
Furthermore, fk(θ

h
xy)1(hTxy > 0) ≤ 1/2 – that is because a point on the correct side

corresponds to θhxy < π/2, and has no more than 1/2 probability to flip across to the wrong

side. Finally, by symmetry, we have fk(θ
h
xy)1(hTxy < 0) ≥ 1/2 – a point on the wrong side

of the boundary has no less than 1/2 probability to remain on the wrong side. In this latter
case, both sides of eq. (24) evaluate to 1; in the former case both sides evaluate to 2fk(θ

h
xy),

and the two cases coincide when x is on the boundary.
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Figure 2: Loss functions from eq. (24).

Now it may be interesting to regard eq. (24) as a family of new loss functions. We
illustrate these, as functions of cos(θ), in Figure 2, for a few different values of k.

Many surrogate loss functions are in use already. As our discussion unfolds we shall
notice some similarities with the margin loss. However, while the margin loss pre-specifies
that margin is a benign structure, our loss function discovers it from the requirement of
low distortion under RP. Moreover, contrary to the margin loss and other surrogate losses,
it retains the scale-invariance of the zero-one loss. Indeed, if we scale the data or/and the
classifier, the new loss function value remains the same.

However, whether this will be useful, will depend on the complexity of the function class
defined by the new loss function, which we need to evaluate. To make this tractable, we
will work with the Gaussian R, as this allows us to exploit the availability of the exact
expression of the loss function, using Lemma 2.2. We will prove the following result:

Theorem 3.1. Fix any positive integer k ≤ d. For any δ > 0, with probability at least 1−δ
with respect to the random draws of T N of size N , ∀h ∈ H the generalization error of h is
upper bounded as the following:

Prx,y[h
Txy ≤ 0] ≤ 1

N

N∑
n=1

min(1, 2fk(θ
h
xnyn)) +

2
√

2√
π

√
k

N
+ 3

√
log(2/δ)

2N

where fk(θ) is the expression given in eq. (8).

The first term is the empirical error computed from the sample through our new loss
function. The second term is analogous to the complexity term in VC bounds – however,
now the target dimension k of the RP takes the place of the VC dimension, reducing this
term from

√
d/N to

√
k/N at the expense of a higher empirical average, unless there is

enough benign structure to support a smaller value of k. If k grows to d and there is no
structure at all, we recover the classical VC bound.
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The analogy with margin bounds becomes apparent if we interpret k as an inverse
margin, and look at the tradeoff this manages. The usual norm constraints in margin
bounds are now taken care of automatically by the cosine similarities, and in this view the
bound may be interpreted as an alternative derivation of margin distribution arguments.
In later subsections we shall see how this is useful for establishing new connections between
existing methods and algorithms.

Before delving into the proof, we should mention that, in the form stated, k needs to be
specified before seeing the sample. We can think of it as an ‘affordable complexity’ which we
can conveniently choose relative to the available sample size. The distortion term measured
on the sample will then reflect the extent of error incurred. Alternatively we may apply
structural risk minimization (SRM) (Vapnik, 1998) to make the bound hold uniformly for
all values of k. Take the sequence (ki)i≥1 with ki = i, and let µi – chosen before seeing
the sample – be our prior belief in the value ki s.t.

∑
i≥1 µi = 1. Then applying Theorem

3.1 with δi := δµi, and applying union bound over the sequence of values ki, we get the
conclusion of Theorem 3.1 simultaneously for all k at an expense of a small additive error.
For instance, if we choose an exponential prior probability sequence, µi = 2−k, then this

additional error term evaluates to 3

√
log(2)

2

√
k
N , yielding the following corollary.

Corollary 3.1.1. For any δ > 0, with probability at least 1− δ with respect to the random
draws of T N of size N , ∀h ∈ H, ∀k ≤ d the generalization error of h is upper bounded as
the following:

Prx,y[h
Txy ≤ 0] ≤ 1

N

N∑
n=1

min(1, 2fk(θ
h
xnyn)) +

(
2
√

2√
π

+
3
√

log(2)√
2

)√
k

N
+ 3

√
log(2/δ)

2N

where fk(θ) is the expression given in eq. (8).

We remark that the constant in the brackets above is

(
2
√
2√
π

+
3
√

log(2)√
2

)
u 3.362.

Figure 3 demonstrates the bound of Theorem 3.1 for a synthetic example, with δ = 0.05.
The sample size was N = 5000, and the cosine values were generated from a 0-mean
Gaussian with variance 1/9; values outside of [−1, 1] were replaced with samples from the
uniform distribution on [−1, 1]. The first term on the r.h.s. of the bound (‘Flip p’) is plotted
against the sum of the last two terms (‘Complexity’), along with their sum (‘Bound’). We
see the trade-off between the average flip probability under RP, and the complexity of the
function class in the RP space, as the RP dimension k varies.

To prove Theorem 3.1, we need the following lemma.

Lemma 3.2. The function fk(θ) satisfies the following properties:

(a) Lipschitz continuity as a function of cos(θ), with constant
√

k
2π :

For any k and any θ1, θ2 ∈ [0, 2π],

|fk(θ1)− fk(θ2)| ≤
√

k

2π
| cos(θ1)− cos(θ2)|. (25)
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Figure 3: Illustration of the bound of Theorem 3.1.

(b) Scale invariance:
For any c1, c2 > 0,

fk(θ
c2h
c1x) = fk(θ

h
x). (26)

Proof of Lemma 3.2. Part (a). Let a := cos(θ), and define

ϕk(a) :=
Γ(k)

(Γ(k/2))2

∫ 1−a
1+a

0

z(k−2)/2

(1 + z)k
dz (27)

so we have
fk(θ

h
x) = ϕk(cos(θ)). (28)

By the Leibniz integration rule we have that:

|ϕk(a)| =

∣∣∣∣− Γ(k)

2k−1(Γ(k/2))2
(1− a2)

k−2
2

∣∣∣∣ (29)

≤ Γ(k)

(Γ(k/2))2 2k−1
=: L (30)

Hence, ϕk(·) is L-Lipschitz.
We can further simplify the expression of L by rewriting it into a Gamma function ratio.

Using the duplication formula (Abramowitz & Stegun, 1965, 6.1.18, pg. 256):

Γ(2z) = (2π)−
1
2 22z−

1
2 Γ(z)Γ((2z + 1)/2) (31)

with z = k/2, the expression of L is equal to:

2k−
1
2 Γ(k/2)Γ((k + 1)/2)√
2π2k−1(Γ(k/2))2

=
Γ(k/2)Γ((k + 1)/2)√

π (Γ(k/2))2
=

Γ((k + 1)/2)√
π Γ(k/2)

(32)
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Now we use an inequality for Gamma function ratios (Wendel, 1948):

x(x+ y)y−1 ≤ Γ(x+ y)

Γ(x)
≤ xy,∀y ∈ [0, 1], (33)

which yields:

L =
Γ(k/2 + 1/2)√
π Γ(k/2)

≤
√

k

2π
(34)

This completes the proof of part (a).
Part (b) is immediate, as the expression of fk(θ

h
x) depends on x and h only through

their angle.

With all ingredients in place, the proof of Theorem 3.1 is now straightforward.

Proof of Theorem 3.1. By the classical Rademacher complexity based risk bound (Mohri,
Rostamizadeh, & Talwalkar, 2012; Koltchinskii & Panchenko, 2002, Theorem 3.1.), for any
positive integer k, the following holds uniformly for all halfspace classifiers h ∈ H:

Prx,y[h
Txy ≤ 0] ≤ 1

N

N∑
n=1

min(1, 2fk(θ
h
xnyn)) + 2R̂N (Gk) + 3

√
log(2/δ)

2N
(35)

where R̂N (·) denotes the empirical Rademacher complexity of the function class in its
argument, and we defined the function class Gk:

Gk = {u→ min(1, 2fk(θ
h
u)) : h ∈ Rd} (36)

By Lemma 3.2 (a), the functions in this class are Lipschitz functions of cos(θhxy). Hence,
to compute the Rademacher complexity, we interpret Gk as a composition:

Gk = `k ◦ F , (37)

where

`k : [−1, 1]→ [0, 1], `k(a) = min

(
1, 2

Γ(k)

(Γ(k/2))2

∫ 1−a
1+a

0

z(k−2)/2

(1 + z)k
dz

)

F =

{
u→ hT

‖h‖
u

‖u‖
: h ∈ Rd

}
By Lemma 3.2 part (a), `k has Lipschitz constant

√
2k
π . In consequence, by Talagrand’s

contraction lemma we have:

R̂N (Gk) ≤
√

2k

π
· R̂N (F) (38)

Finally, since F is a linear function class of h/‖h‖, and the vectors h/‖h‖ and xy/‖x‖ have
unit norms, we have (Mohri et al., 2012, Theorem 4.3) that R̂N (F) ≤ 1√

N
Combining this

with eqs (35) and (38) completes the proof.
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3.1.1 A Variant with Local Choices of k

The idea in this section is to allow the values of k to differ for each input point. This will
give us choices to pre-define more compressible and less compressible regions of the input
space when appropriate. This leads to the following result.

Theorem 3.3. Let k : Rd×H → N a deterministic function specified independently of T N .
Then ∀h ∈ H, with probability 1 − δ with respect to the random draw of a training set of
size N , the generalization error of h is upper bounded as the following:

Prx,y[h
Txy ≤ 0] ≤ 1

N

N∑
n=1

min(1, 2fk(xnyn,h)(θ
h
xnyn)) + 2

√
2

π

√
1

N

N
max
n=1

k(xnyn, h)

+ 3

√
log(2/δ)

2N
+ 3

√
log(2)

2

√
1

N

N
max
n=1

k(xnyn, h)

Some comments are now in order, as it may seem impractical to compress each point
to a different dimension. However, recall that our use of random projections only serves an
analytic purpose throughout this section; we are interested in what can be said about the
original learning problem in the original space, through the lens of random projections.

The implications of Theorem 3.3 in theory and practice will be discussed further in
Section 3.2 and Section 3.3.1, where this result will allow us to make connections between
various existing results and successful algorithms. In particular, the bounds in Corollary
3.4.1 and Corollary 3.5.2 will both be implied by Theorem 3.3, and the r.h.s. of those
bounds are minimized by the Large Margin Distribution Machine (Zhang & Zhou, 2014)
and a regularized boosting (Schapire, 2013) respectively.

Before turning to the proof, it should be observed that, at a first sight, the goal of the
bound in Theorem 3.3 might seem tricky technically, since each choice of k is a model order
selection problem, and we now try to have as many as the number of data points. The trick
here is to notice and exploit a specific property of the function fk(θ), given in Lemma 3.4
below, namely its monotonicity with respect to k on θ ∈ [0, π/2]. Using this, the proof of
Theorem 3.3 becomes straightforward.

Lemma 3.4. For any integer k ≥ 1 and any h, x ∈ Rd, we have:

fk(θ
h
x)1(hTx > 0) ≥ fk+1(θ

h
x)1(hTx > 0). (39)

Proof of Lemma 3.4. We will use an equivalent rewriting of fk(φ) as the ratio of the area
of a hyperspherical cap to the area of the corresponding hypersphere (Durrant & Kabán,
2013, part 2 of Theorem 3.2), that is:

fk(φ) =

∫ φ
0 sink−1(θ) dθ∫ π
0 sink−1(θ) dθ

. (40)

It is sufficient to show that for all φ ∈ [0, π/2], the ratio of successive flip probabilities:

fk+1(φ)

fk(φ)
=

(∫ φ
0 sink(θ) dθ∫ π
0 sink(θ) dθ

)
/

(∫ φ
0 sink−1(θ) dθ∫ π
0 sink−1(θ) dθ

)
6 1 (41)
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Let us rewrite the ratio eq. (41) above as:( ∫ φ
0 sink(θ) dθ∫ φ

0 sink−1(θ) dθ

)
/

( ∫ π
0 sink(θ) dθ∫ π

0 sink−1(θ) dθ

)
(42)

Denote the numerator of eq. (42) by gk(φ), and notice that the denominator is nothing but
gk(π).

Now observe that the denominator, gk(π) = gk(π/2). Indeed,∫ π
0 sink(θ) dθ∫ π

0 sink−1(θ) dθ
=

2
∫ π/2
0 sink(θ) dθ

2
∫ π/2
0 sink−1(θ) dθ

=

∫ π/2
0 sink(θ) dθ∫ π/2

0 sink−1(θ) dθ
(43)

where the first equality follows from the symmetry of the sine function about π/2. Hence,
we see that the whole expression (42) is equal to 1 when φ = π/2.

Now it remains to show that gk(φ) ≤ gk(π/2),∀φ ∈ [0, π/2],∀k. In fact more is true:
We show that ∀k, the function gk(φ) is monotonic increasing on the interval [0, π/2]. From
this the required inequality follows, and hence the expression (42) has its maximum value
of 1 on this domain, from which the result follows.

To show monotonicity, we differentiate the function gk(φ) w.r.t φ, and obtain:

d

dφ
gk(φ) =

sink(φ)
∫ φ
0 sink−1(θ)dθ − sink−1(φ)

∫ φ
0 sink(θ)dθ(∫ θ

0 sink−1(θ)dθ
)2 (44)

Then (44) is greater than zero when its numerator is, and:

sink(φ)

∫ φ

0
sink−1(θ)dθ − sink−1(φ)

∫ φ

0
sink(θ)dθ

= sink−1(φ)

[
sin(φ)

∫ φ

0
sink−1(θ)dθ −

∫ φ

0
sink(θ)dθ

]
(45)

= sink−1(φ)

[∫ φ

0
sin(φ) sink−1(θ)dθ −

∫ φ

0
sin(θ) sink−1(θ)dθ

]
> 0 (46)

The last step follows from the monotonicity and non-negativity of the sine function on
[0, π/2] and so sin(φ) > sin(θ) for φ > θ > 0, θ ∈ [0, π/2]. It follows now that the numerator
of (42) is monotonic increasing with φ ∈ [0, π/2] and so the whole expression (41) takes its
maximum value of 1 when φ = π/2. This completes the proof.

Proof of Theorem 3.3. We use Theorem 3.1 with SRM on k. This allows us to select the
value for k after seeing the sample. Let this value be kmax = maxNn=1 k(xnyn, h). Hence it
holds w.p. 1− δ, ∀h ∈ H that:

Prx,y[h
Txy ≤ 0] ≤ 1

N

N∑
n=1

min(1, 2fkmax(θhxnyn)) +
2
√

2√
π

√
kmax

N

+3

√
log(2/δ)

2N
+ 3

√
log(2)

2

√
kmax

N
(47)
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Due to Lemma 3.4, for any u, h, the function min(1, 2fk(θ
h
u)) is non-increasing with k.

Therefore the first term on the r.h.s. in Theorem 3.3 is a deterministic upper bound on the
first term of eq. (47), and all the other terms are identical.

3.2 Application to Uncovering New Connections Between Existing Algorithms

A desirable property for new theoretical results is an ability to provide a unifying context
that can connect earlier work. In this section we show that the theorems presented in this
section facilitate this.

3.2.1 Connection with the Large Margin Distribution Machine

We shall instantiate the bound of Theorem 3.3. The idea is to define the function k =
k(xy, h) in a way to lead to an analytic convex expression of h/‖h‖.

To do this, first we bound the fk(θ) term using the analytic upper bound given in eq.
(10), which is tight on the interval θ ∈ [−π/2, π/2), and is still a bound on θ ∈ [π/2, 3π/2].

min(1, 2fk(θ)) ≤ 2 exp

{
−k cos2(θ) · sgn(cos(θ))

2

}
(48)

For k(·) we choose the following:

k(xy, h) :=
2∣∣cos(θhxy)

∣∣ (49)

Plugging this into Theorem 3.3 we obtain:

Corollary 3.4.1. With probability 1− δ w.r.t. the training set of size N , ∀h ∈ H,

Prx,y[h
Txy ≤ 0] ≤ 1

N

N∑
n=1

2 exp

(
− hTxnyn
‖h‖ · ‖xn‖

)
+

4√
π

1√
N
·max

n

√
‖h‖ · ‖xn‖
|hTxn|

+ 3

√
log(2/δ)

2N
+ 3

√
log(2)

N
·max

n

√
‖h‖ · ‖xn‖
|hTxn|

(50)

Observe that if we were to turn this bound into a minimization objective, we would
minimize an exponential loss and maximize the minimum margin. That is, minimizing the
exponential loss in fact minimizes a tight upper bound on the flipping probability.

Denote by γhn = hT xnyn
‖h‖·‖xn‖ the margin of the point xn with respect to the hyperplane

defined by h. Using the Taylor expansion for exp(·) we can write:

1

N

N∑
n=1

exp

(
− hTxnyn
‖h‖ · ‖xn‖

)
=

1

N

N∑
n=1

exp
(
−γhn

)
= 1− 1

N

N∑
n=1

γhn +
1

N

N∑
n=1

(γhn)2 − ...

Now, observe that the minimizer of this term in our generalization bound implies that the
average of the empirical margin distribution is maximized and its second moment (so also
the variance) is minimized. Hence, replacing the exponential term with its second order
Taylor approximation in the bound of eq. (50) we obtain an objective that recovers the
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recently proposed and successful method of Large Margin Distribution Machine (LDM)
(Zhang & Zhou, 2014). Of course, the new loss function from our bound contains also the
higher order moments, capturing the entire empirical distribution of margins.

Indeed, the LDM (Zhang & Zhou, 2014) was formulated as a quadratic objective, imple-
mented in an efficient algorithm that maximizes the sample mean and minimizes the sample
variance of the observed margin distribution, in addition to maximizing the minimum mar-
gin. Its original motivation was a boosting bound of Gao and Zhou (2013), given as a
function of the average and ‘some notion of’ variance of the empirical margin distribution,
derived by entirely different means. Via a completely different route, here we obtained a
new explanation of LDM – namely as implementing an approximate minimizer of the bound
in eq. (50).

3.3 An Empirical Assessment of Theorem 3.1

To assess the informativeness of our basic bound from Theorem 3.1, we create a classifier
by minimizing the bound, without the ambition of a computationally efficient approach.

To be precise, our rationale is the following. A good theory should be capable of explain-
ing essential characteristics of learning. The VC theory, despite its completeness (matching
upper and lower bounds) is known to fall short of this desideratum, and it is therefore not
suited to generate new algorithms. Margin theory is one remedy, which created the SVM.
Since a RP-based analysis has an ability to capture low dimensional structures, and we have
just seen how this can help explain new connections between different existing approaches,
our aim in this section is to assess to what extent this theoretical finding is in tune with
empirically observed behavior of classifiers.

We shall compare the bound-minimizing classifier with the most related existing algo-
rithms: i) the gold-standard SVM – which maximizes the minimal margin and disregards
other geometry and is therefore not robust against perturbations or outliers; ii) the direct
zero-one loss minimizer (Nguyen & Sanner, 2013) – which in our framework corresponds to
choosing a very large value for k; iii) the LDM (Zhang & Zhou, 2014) – which in our theory
may be viewed as approximately minimizing the local version of our bound.

To this end, first we observe that so far it was sufficient for our purposes to consider h
that goes through the origin, however in this context this is worth fine-tuning. The reason
is that adding an intercept in the usual manner (by padding the inputs with a dummy
feature of ones) when we work with the exact form of fk(·), may not achieve the best
achievable cosine values. Instead, we incorporate a new parameter vector z that allows us
to slightly shift the data simultaneously with learning h to minimize the objective formed
by the h-dependent terms of the bound. Thus, we minimize the following:

Obj(h, z) =

N∑
n=1

Γ(k)

(Γ(k/2))2

∫ 1−an(h,z)
1+an(h,z)

0

v(k−2)/2

(1 + v)k
dv (51)

where

an(h, z) := cos(θh(xn−z)yn) =
hT

‖h‖
(xn − z)yn
‖xn − z‖

(52)

We initialize z in a low density region (e.g. the mid-point between data centres, z0)
and fine-tune it from the data in a small neighbourhood of z0. Before doing so, let us
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theoretically show that z is indeed learnable in this way. Replace x by x − z throughout,
and define the modified function class

Fshiftk (h, z) =

{
x→ hT

‖h‖
· (x− z)
‖x− z‖

: h, z ∈ Rd
}

(53)

Lemma 3.5. Let B(z0, r) be the Euclidean ball of radius r centred at z0.
Fix ε > 0, and suppose we can choose r > 0 small enough so that
supz∈B(z0,r)

r√
N

∑N
n=1

1
‖xn−z‖ ≤ ε. Then:

R̂(Fshiftk (h, z)) ≤ 1 + ε√
N

(54)

Note the technical condition on Lemma 3.5 does not depend on the class labels, and
only requires a low-density region around the center of the input set.

Proof of Lemma 3.5. First, observe that for any fixed z0, the empirical Rademacher com-
plexity remains unchanged.

R̂(Fshiftk )(h, z = z0) = Eσ sup
h∈Rd

1

N

[
N∑
n=1

σn
hT

‖h‖
· (xn − z0)
‖xn − z0‖

]
=

1√
N

Now, for any tolerance ε > 0, by the mean value theorem and Cauchy-Schwartz, we have:

R̂(Fshiftk (h, z)) = Eσ sup
h∈Rd,z∈B

1

N

[
N∑
n=1

σn
hT

‖h‖
· (xn − z)
‖xn − z‖

]
≤ Eσ sup

h,z
‖∆z‖ · ‖z − z0‖+ R̂(Fshiftk (h, z0)) (55)

where ∆z is the gradient w.r.t. z of the function in the argument of the supremum, so:

‖∆z‖ =

∥∥∥∥∥ hT‖h‖ · 1

N

N∑
n=1

(
Id −

(xn − z)(xn − z)T

‖xn − z‖2

)
· σn
‖xn − z‖

∥∥∥∥∥ (56)

≤ sup
z∈B(z0,r)

1

N

N∑
n=1

1

‖xn − z‖
(57)

≤ ε

r
√
N

(58)

The inequality in eq. (57) is because

λmax

(
Id −

(xn − z)(xn − z)T

‖xn − z‖2

)
= 1. (59)

Plugging this back into eq. (55) and noting that ‖z − z0‖ ≤ r gives:

R̂(Fshiftk (h, z)) ≤ ε√
N

+ R̂(Fshiftk (h, z0)) =
1 + ε√
N
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Figure 4: Illustration of our bound-optimizing classifier against the SVM and the zero-
one loss minimizer. Note the very different separating planes obtained by each
approach. In particular, the orientation of the SVM boundary is exclusively
determined by the four support vectors.

Now we are ready to turn Theorem 3.1 into an algorithm. The gradients w.r.t. h and z
are as follows:

∆h =
1

N

N∑
n=1

`′k(an(h, z)) · (xn − z)yn
‖xn − z‖

·
(
Id −

hhT

‖h‖2

)
1

‖h‖

∆z = − 1

N

N∑
n=1

`′k(an(h, z)) · hyn
‖h‖
·
(
Id −

(xn − z)(xn − z)T

‖xn − z‖2

)
· 1

‖xn − z‖

where

`′k(an(h, z)) = − Γ(k)

2k−1(Γ(k/2))2
(1− an(h, z)2)

k−2
2 . (60)

We used numerical integration (Simpson quadrature, cf. MatLab’s built-in function ‘quad’)
to evaluate the objective, and a freely available generic nonlinear optimizer4 that employs
a combination of conjugate gradient and line search methods.

Figure 4 illustrates the classifier that results from optimizing our bound on toy data
created to showcase the difference from SVM and the zero-one loss minimizer. It is most
apparent that the bound-minimizing classifier is robust against unessential detail in the
data, and captures the essential geometric structure. The difference from LDM was nearly
indistinguishable on this data set, which agrees with the interpretation of LDM that we
derived from our RP-based analyses in the previous subsection.

4. http://learning.eng.cam.ac.uk/carl/code/minimize/
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Table 1: Mean of test error rates ± one standard error for our bound optimizer and some
comparisons. We marked in bold font all statistically significant out-performances
in test error over SVM at the 0.05 level using a paired t-test. Italic font in last
two columns indicates performance was statistically significantly worse than SVM
for the competing methods on the corresponding dataset.

Data set N d Bound min. SVM Zero-one Loss LDM

Australian 690 14 0.137± 0.015 0.148± 0.013 0.156±0.077 0.149± 0.014
German 1000 24 0.260± 0.018 0.280± 0.016 0.264±0.021 0.315±0.015
Haberman 306 3 0.265± 0.025 0.285± 0.050 0.268±0.024 0.276±0.030
Parkinsons 195 22 0.141± 0.032 0.221± 0.049 0.141± 0.036 0.135±0.034
PlRelax 182 12 0.285± 0.029 0.361± 0.166 0.299±0.035 0.290±0.051
Sonar 208 60 0.256± 0.045 0.271± 0.036 0.245±0.044 0.264±0.044

Further experimental tests on UCI data sets (Dua & Graff, 2017) are presented in Table
1. For each data set we performed 50 independent splits into two halves. Our parameter k,
and SVM’s C parameter were set by 5-fold cross-validation on the training half. The error
rates on the held-out testing half of the data are reported in Table 1 in comparison with
those of SVM (linear kernel). Despite the non-convex optimization involved in optimizing
our bound, we observe improved generalization performance in 5 out of 6 data sets tested,
which were statistically significant at the 0.05 level using a paired t-test. On the Sonar data
set no statistically significant differences have been observed at the 0.05 level.

The statistically significant improvements achieved may or may not be practically signif-
icant – this would of course depend on the application domain, and the computing resources,
as a direct minimization of our bound is far less efficient than the fast QP solver based
LDM. However, what these results demonstrate is that the RP-based theory presented in
the earlier sections does capture some essential characteristics that govern generalization,
the obtained generalization bound is structure-aware and informative, its predictions are in
agreement with practical experience.

3.3.1 Beyond Linear Classification: Connecting Two Views of Boosting

In this section we demonstrate the applicability of the ideas and techniques presented so far
to a nonlinear situation: a linearly weighted ensemble of binary valued base learners from
the function class B = {b : X → {−1, 1}}, with weights α = (α1, α2, ..., αT ):

Fens =

{
x→

T∑
t=1

αtbt(x) : bt ∈ B,
T∑
i=1

|αi| ≤ 1

}
(61)

such as a boosting ensemble, which is known to be a very successful ensemble technique in
practice (Opitz & Maclin, 1999). The bounds derived so far can be adapted to this class
simply by replacing the empirical Rademacher complexity term of the unit-norm linear
function class with that of the base-learner.

By adapting our Theorem 3.1, we obtain the following as a corollary.
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Corollary 3.5.1. Fix any k(≤ T ) positive integer, and δ > 0. With probability 1− δ w.r.t.

the training set of size N , uniformly for all αt,
∑T

t=1 |αt| ≤ 1 and all bt ∈ B, t = 1, ..., T ,

Prx,y[

T∑
t=1

αtbt(x)y ≤ 0] ≤ 1

N

N∑
n=1

min
(

1, 2fk(θαb(xn)yn)
)

+ c

√
k · V (B)

N
+ 3

√
log(2/δ)

2N
(62)

where V denotes VC-dimension, and c > 0 is a universal constant.

If we regard k as the inverse of a margin parameter, then Corollary 3.5.1 is analogous
to the empirical margin distribution bound on boosting (Schapire, Freund, Bartlett, &
Lee, 1998), derived by very different means, which gave rise to the classic margin-based
explanation for the performance of boosting.

Before giving the proof, let us obtain another classical view of boosting, namely that of
loss minimization (Schapire, 2013), from the same principle, by adapting our Theorem 3.3.
While both views of boosting have coexisted for a long time, to our knowledge there has
not previously been a single generic principle to connect them.

Indeed, applying Theorem 3.3 with the choice

k(h, b(x)y) :=
2‖b(x)‖2
| cos(θαb(x)y)|

·
‖α‖2
‖α‖1

, (63)

where b is the vector of binary predictions (bt)t=1,...,T we get the following:

Corollary 3.5.2. With probability 1− δ w.r.t. the training set of size N , uniformly for all
αt,
∑T

t=1 |αt| ≤ 1 and all bt ∈ B, t = 1, ..., T ,

Prx,y[α
T b(x)y ≤ 0] ≤ 1

N

N∑
n=1

2 exp

(
−α

T b(xn)yn
‖α‖1

)
+ 3

√
log(2/δ)

2N

+

(
c

√
V (B)

N
+ 3

√
log(2)

2N

)
√

2T max
n

√
‖α‖1

|αT b(xn)|
(64)

The dependence on T comes from ‖b(x)‖2 =
√
T that enters in cosine-margins.

The point here is that, looking at the r.h.s. of the bound of Corollary 3.5.2 as a
minimization objective, we recognize the first term is the well-known exponential loss of
adaboost, and the last term contains the inverse of the minimum margin – together these
recover a regularized adaboost (Schapire, 2013). Thus, these two different views of boosting
can now be understood as manifestations of the same principle, more precisely a requirement
of robustness to perturbations created by random projections.

Proof of Corollary 3.5.1. We apply Theorem 3.1 to the linear-convex aggregation in Fens,
but since here the inputs into this aggregation are the outputs of the base classifiers learned
from the data, we need to replace the empirical Rademacher complexity contained in that
bound with the following:

R̂N (Fens) =
1

N
Eσ sup

α,b

N∑
n=1

σn
αT b(xn)

‖α‖ · ‖b(xn)‖

= sup
α

‖α‖1
‖α‖2

1

N
Eσ sup

α,b

N∑
n=1

σn
αT

‖α‖1
· 1

‖b(xn)‖2
b(xn) (65)
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Since b(xn) ∈ {−1, 1}T , we have ‖b(xn)‖2 =
√
T ,∀xn. We also have ‖α‖1‖α‖2 ≤

√
T . There-

fore, the elements of Fens belong to the absolute convex hull of B, so by a classical result
(Boucheron, Bousquet, & Lugosi, 2005, Theorem 3.3.) we have the r.h.s. of eq. (65) upper
bounded by:

1

N
Eσ sup

b

N∑
n=1

σnb(xn) = R̂N (B) ≤ c
√
V (B)

N
(66)

for some absolute constant c. The last inequality is a known link between the Rademacher
complexities and VC dimension (Koltchinskii & Panchenko, 2002).

Proof of Corollary 3.5.2. We apply Theorem 3.3, replacing the empirical Rademacher com-
plexity, and we note that:

√
k(xnyn, h) =

√
2‖b(xn)‖

| cos(θαb(xn)yn)|
·
‖α‖2
‖α‖1

≤

√
2‖α‖1
|αT b(xn)|

·
√
T (67)

since ‖α‖2‖α‖1 ≤ 1, and ‖b(xn)‖2 =
√
T . Multiplying together eqs. (67) and (65) completes

the proof.

4. Conclusions

We proved risk bounds for halfspace learning, which automatically tighten in the pres-
ence of compressible structure. We addressed both learning from compressive data as well
as learning from the original high-dimensional data, with generalization error guarantees.
In particular we demonstrated that insights gained from studying the ERM classifier on
randomly projected data can be employed to develop novel uniform bounds in the full high-
dimensional space. In this context, the probability of a point flipping across the boundary
can also be viewed as a Lipschitz approximation of the zero-one loss, which keeps the scale
invariance of the zero-one loss, while at the same time it gains us access to the effects of small
perturbations on low complexity sets. We extensively discussed several implications of our
results, to draw connections between some existing successful classification approaches, in-
cluding the computationally efficient LDM, and two different explanations of boosting. We
also demonstrated the informativeness of our bounds empirically in simulation experiments.

Our main focus was linear classification, although we have also shown an extension to
boosting ensembles. For nonlinear problems one could also, in principle, replace x with
its feature space representation φ(x) induced by a fixed choice of kernel s.t. K(x1, x2) =
φ(x1)

Tφ(x2), and the bounds we presented for the linear models here would then hold in
unchanged form for the kernel-based function class. Of course various quantities will change
under the mapping φ(·) relative to the original data, and such an approach sacrifices some
practical advantages of our bounds, and addressing this remains for future work. Another
interesting avenue is to extend the approach of this analysis to other function classes and
more complex models.
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Appendix A. Proof of Lemma 2.2

Without loss of generality (w.l.o.g.) we can take ‖h‖ = ‖x‖ = 1.
Part (a). Rewrite the probability of interest as the following:

PrR
{
hTRTRx ≤ 0

}
= PrR

{
‖R(h+ x)‖2 − ‖R(h− x)‖2 ≤ 0

}
(68)

Now, observe that the two terms ‖R(h + x)‖2 and ‖R(h − x)‖2 are statistically indepen-
dent. Indeed, each component of the random vectors R(h+ x) and R(h− x) are Gaussian
distributed, and denoting by Ri the i-th row of R, it is easy to verify that

Cov(Ri(h+ x), Ri(h− x)) = ‖h‖2 − ‖x‖2 = 0

since w.l.o.g. we assumed ‖h‖ = ‖x‖ = 1. Likewise,

Cov(Ri(h+ x), Rj(h− x))i 6=j = 0

by the independence of the rows of R.
The variances are Var(R(h + x)) = ‖h + x‖2 and Var(R(h − x)) = ‖h − x‖2. Hence,

denoting

U2 :=

∥∥∥∥R h+ x

‖h+ x‖

∥∥∥∥2 ; V 2 :=

∥∥∥∥R h− x
‖h− x‖

∥∥∥∥2 (69)

these are independent standard χ2 variables. Therefore, we may rewrite eq. (68) as the
following:

PrR
{
hTRTRx ≤ 0

}
= PrU2,V 2

{
U2‖h+ x‖2 < V 2‖h− x‖2

}
= PrU2,V 2

{
U2

V 2
<
‖h− x‖2

‖h+ x‖2

}
(70)

where the fraction on the l.h.s. is F -distributed. Further, observe that the r.h.s. is

‖h− x‖2

‖h+ x‖2
=

2− 2hTx

2 + 2hTx
=

1− cos(θ)

1 + cos(θ)
(71)

since ‖h‖ = ‖x‖ = 1. Denoting this value by ψ, the integral of the cumulative density
function of the F-distribution at ψ gives us the result stated in eq. (8).

The upper bound in eq. (10) follows from convex geometry (Ball, 1997) after noticing
the geometric interpretation of eq. (8) as the ratio between the area of a hyperspherical cap
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with angle 2θ and the surface area of the corresponding sphere when cos(θ) > 0 (Durrant
& Kabán, 2013). Instead, below we give an elementary proof.

It is sufficient to consider the case cos(θ) > 0, and the case cos(θ) ≤ 0 follows in the
same way by symmetry. When cos(θ) > 0, we rewrite the r.h.s. of eq. (70) as the following:

Pr{(Rh)TRx ≤ 0} = PrU2,V 2

{
−(cos(θ) + 1)U2 − (cos(θ)− 1)V 2 > 0

}
≤ E[exp

{
−λ(cos(θ) + 1)U2 − λ(cos(θ)− 1)V 2)

}
]

= (1 + 2λ(cos(θ) + 1))−k/2(1 + 2λ(cos(θ)− 1))−k/2 (72)

for all λ > 0 such that 1 + 2λ(cos(θ)− 1) > 0. In the last line we used that U2 and V 2 are
independent χ2 variables.

After straightforward algebra, the r.h.s. of eq. (72) equals:

(1 + 4λ cos(θ)− 4λ2 sin2(θ))−k/2

minimizing this w.r.t. λ gives that the optimal λ satisfies 2 sin2(θ)λ = cos(θ).

So, if θ 6= 0 then λ = cos(θ)

2 sin2(θ)
– which satisfies the condition required above. In turn, if

θ = 0 then the probability of interest is trivially 0 so the upper-bound we derive holds in
both cases.

Plugging back, after cancellations we get for the case hTx > 0 that:

Pr{(Rh)TRx ≤ 0} ≤
(

1 +
cos2(θ)

sin2(θ)

)−k/2
= (sin2(θ))k/2

= (1− cos2(θ))k/2

≤ exp

{
−k

2
cos2(θ)

}
�

Part (b). We start by rewriting as in eq. (68). But now the two quadratic terms are not
independent in general (albeit they are uncorrelated), since these are now non-Gaussian –
hence we need to purse a different strategy.

Rewrite eq. (68) by inserting the following expression, which evaluates to zero:

kσ2‖h+ x‖2(1− cos(θ))− kσ2‖h− x‖2(1 + cos(θ)) (73)

Indeed, it is easy to check that this expression equals kσ2(4hTx − 4 cos(θ)) = 0 because
‖h‖ = ‖x‖ = 1.

We insert eq. (73) into eq. (68):

Pr
{
−[‖R(h+ x)‖2 − kσ2‖h+ x‖2(1− cos(θ))] + ...

[‖R(h− x)‖2 − kσ2‖h− x‖2(1 + cos(θ))] > 0| cos(θ) > 0
}

(74)

Exponentiating both sides, and employing Markov inequality, for any λ > 0 the r.h.s. of
eq. (74) is upper bounded by:

E
[
exp

{
−λ
(
‖R(h+ x)‖2 − kσ2‖h+ x‖2(1− cos(θ))

)
+ ...

λ
(
‖R(h− x)‖2 − kσ2‖h− x‖2(1 + cos(θ))

)}
| cos(θ) > 0

]
(75)
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Next, we introduce a convex combination which will serve us to exploit the convexity of the
exponential function. For any α ∈ (0, 1), eq. (75) equals:

= E

[
exp

{
−αλ

α

(
‖R(h+ x)‖2 − kσ2‖h+ x‖2(1− cos(θ))

)
+ ...

(1− α)
λ

1− α
(
‖R(h− x)‖2 − kσ2‖h− x‖2(1 + cos(θ))

)}
| cos(θ) > 0

]
≤ αE

[
exp

{
−λ
α

[‖R(h+ x)‖2 − kσ2‖h+ x‖2(1− cos(θ))]

}
| cos(θ) > 0

]
+ ...

(1− α)E

[
exp

{
λ

1− α
[‖R(h− x)‖2 − kσ2‖h− x‖2(1 + cos(θ))]

}
| cos(θ) > 0

]
where we used Jensen’s inequality in the last line.

Now, λ1 := λ
α and λ2 := λ

1−α are two free parameters each of which may be optimized
independently because we can take λ = 1/(1/λ1 +1/λ2). Further, since R was subgaussian,
we have two sub-exponential moment generating functions in eq. (75) that are identical to
those that appear in the proof of the two sides of the Johnson-Lindenstrauss lemma (JLL)
by Dasgupta and Gupta (2002), but now with ε := cos(θ) ∈ (0, 1) playing the role of the
distortion parameter. Hence, by the same arguments as in JLL, both expectations above
are upper-bounded by exp(−kε2/8) = exp(−k cos2(θ)/8). So we obtain the upper bound:

α exp(−k cos2(θ)/8) + (1− α) exp(−k cos2(θ)/8) = exp(−k cos2(θ)/8) �
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