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Abstract:  

External control of electronic phases in correlated-electron materials is a long-standing challenge 
of condensed-matter research. Layered cuprates exhibit antiferromagnetic, charge-density-wave 
(CDW), and high-temperature superconducting ground states which can be tuned by doping and 
external magnetic fields. However, disorder generated by lattice defects and randomly pinned 
magnetic vortices greatly complicates the interpretation of these experiments. Here, we report a 
high-resolution inelastic x-ray scattering study of the high-temperature superconductor 
YBa2Cu3O6.67 under uniaxial stress, and show that a three-dimensional long-range-ordered CDW 
state can be induced by pressure along the a-axis, in the absence of magnetic fields. The amplitude 
of the CDW is strongly suppressed below the superconducting transition temperature, indicating 
strong thermodynamic competition with superconductivity. We also show that a strong softening 
of an optical phonon mode is associated with the transition. The results provide new insights into 
the anomalous normal-state properties of high-temperature superconductors and illustrate the 
potential of uniaxial-pressure control of competing orders in quantum materials. 
One Sentence Summary: 

Large uniaxial pressures induce a thermodynamic competitor of high temperature 
superconductivity, demonstrating control of electronic order without extreme conditions. 
  



Main Text:  

Moderately doped high-temperature superconductors show a ubiquitous tendency towards 

charge order (1). Manifestations of charge ordering include striped order in lanthanum-based 

cuprates (2, 3) – an incommensurate modulation of both charge and spin that suppresses 

superconductivity – and a biaxial charge density wave (CDW) with quasi-two-dimensional (2D) 

short-range order in the CuO2 planes of all other cuprate families (4-12). The origin of CDW order 

and its relationship with superconductivity are widely debated issues. It is well-established that 

static CDW order and superconductivity compete, however it is not clear whether the two orders 

are best described as mutually incompatible (7, 8), as different manifestations of the same pairing 

interaction (13), or as different aspects of a composite order parameter (14, 15). These issues have 

direct and important implications for the mechanism of high-temperature superconductivity 

(HTSC).   

The YBa2Cu3O6+x (YBCO6+x) family has been particularly well studied because doping-

induced structural disorder is less severe than in other families. In this compound, the competition 

between superconductivity and CDW order is evidenced by the depression of the CDW amplitude 

upon cooling below the superconducting transition temperature, Tc, (7,8) and by its enhancement 

in magnetic fields that weaken superconductivity (8,9). Nuclear Magnetic Resonance (NMR) and 

x-ray studies further showed that in fields larger than ~15 T a 3D long-range ordered uniaxial CDW 

(16-19) is induced. It is distinct from the 2D one, though they coexist and are related to each other. 

For instance, they share the same in-plane incommensurability. The 3D order has an identifiable 

thermodynamic transition (20-22), whereas the 2D CDW onsets gradually (23-24), and it is not 

clear whether it constitutes an alternative ground state, or is, for example, a vestige of the 3D order 

that is weakened by the interaction with superconductivity. 

Here we use inelastic x-ray scattering (IXS) on a sample of YBCO6.67 (Tc = 65K, doping p 

= 0.12) to show that uniaxial pressure along the crystallographic a axis can induce long-range 3D 

CDW order, in the absence of a magnetic field. At the highest compression, a longitudinal strain 

of 𝜀!!~ − 1.0%, the 3D CDW onsets at a higher temperature and has longer correlation lengths 

than the ones observed in the magnetic field experiments. Its amplitude is rapidly and completely 

suppressed upon entering the superconducting state, revealing a much stronger competition of the 

3D order with superconductivity than that of the 2D CDW. Finally, by monitoring the lattice 



excitations, we observe a strong softening of an optical phonon branch as the 3D order sets in, an 

indication for a thermodynamic ground state that is conspicuously absent for the 2D order. 

We first specify why we chose to work with uniaxial pressures. In the doping range of 

interest (0.08 < 𝑝 < 0.15), hydrostatic pressure yields, through self-doping and other effects, an 

increase of 𝑇" (25). A recent study of the biaxial charge modulation by some of us further revealed 

its rapid suppression under hydrostatic pressure (26). However, it has long been established that, 

at least in the limit of low pressures, the effect of hydrostatic pressure on 𝑇" 	reflects a net sum of 

almost cancelling, much larger effects of uniaxial pressures (27,28). In particular, close to p~0.12 

where the charge modulation is maximized, uniaxial pressure applied along the a-axis suppresses 

𝑇" (ref. 29 and Supplementary Material (SM)).  

In this study, we pressurized the sample using a piezoelectric-based apparatus similar to 

that used in recent studies of ruthenium oxides (30-32), but modified to allow x-ray transmission 

through the apparatus and the sample. For maximum scattering intensity, the thickness of the 

sample should match the absorption length at the working wavelength [𝜆 = 0.6968	Å for this 

experiment (SM)], which is ~ 40 µm. However, to withstand strong compression without buckling, 

the length-to-thickness ratio of the sample cannot be too large (30), and a 40 µm thickness implies 

a length that is inconveniently short for reliable mounting. Therefore, we prepared a thicker needle 

from a YBCO6.67 single crystal, then used a plasma focused ion beam to thin a central portion down 

to 40 µm thickness. The apparatus and sample are illustrated in Fig. 1. The x-ray beam, with a spot 

of 50x40μm2, was considerably smaller than the thinned central portion of the sample, so highly 

uniform strain is expected in the probed volume. All the strain values in this paper were calculated 

using the capacitance sensor. At each strain, changes in the c-axis lattice parameter were carefully 

measured from the (0 0 6) Bragg peak (SM). The highest compression we reached was 𝜀!!~ −

1.0%, where ac susceptibility measurements showed that Tc decreases (at a rate increasing with 

strain) to 48±5 K (SM). 

We first present, in Fig. 2, data on the 2D, biaxial CDW. The scattering intensity of the 

biaxial CDW peaks at the reduced momentum transfer q2D = (h,k,l) = (0,0.31,0.5), in reciprocal 

lattice units (r.l.u.) of the orthorhombic crystal structure. The 3D CDW peaks, in contrast, at 𝒒#$= 

(0,0.31,1). In the rest of the paper, we will mostly refer to the total momentum transfers 𝑸%$ = 

(H,K,L) = (0,0.31,6.5) and 𝑸#$ = (0,0.31,7) around which measurements were carried out, and 

where the structure factor of the CDWs is maximum (33,34). The color maps in Figs. 2A-B show 



the raw IXS intensity at 𝜀!! = 0% (panel A) and at -1.0% (panel B). Both data sets were measured 

below Tc (SM). Two characteristic features of the CDW are clearly visible, namely, the quasi-

elastic ‘central’ peak at 𝑸%$ and the superconductivity-induced Kohn anomaly in the phonon 

spectra. The latter consists in unstrained conditions of a ~15% softening of the low lying acoustical 

phonon (at ~8 meV) at 𝑸%$ (34). Comparing the two panels, it can be seen that the quasi-elastic 

peak is enhanced by the applied pressure. In panel C, it is seen that this enhancement occurs 

smoothly. At the highest strain, the intensity of the peak is a little over two times larger than that 

of the unstrained sample. Its half-width-at-half-maximum (HWHM) 𝜎, which is inversely 

proportional to the modulation correlation length 𝜉 = &
%'(

, decreases modestly under pressure (Fig. 

2D). We did not resolve any shift of 𝑸%$ with 𝜀!! . Finally, comparing panels A and B an increase 

of the low energy spectral weight can be seen under pressure. Its phenomenology and relation to 

the Kohn anomaly will be discussed below. 

There is a much more spectacular response to uniaxial pressure in the scattering pattern at 

𝑸#$. We first look at the strain dependence of the elastic peak intensity along the 𝑸 =	 (0, 0.315, 𝐿) 

line at T = 50 K (Fig. 3A). At 𝜀!! = −0.8%, a small, narrow peak appears at 𝑸#$ . When the 

compression is further increased, to 𝜀!! = −1.0%, this peak becomes much more intense. It 

appears on top of the broad profile centered around	𝑙 = 0.5	(𝐿 = 6.5) that arises from the 2D 

CDW. The profile of the 3D peak along 𝐾 is shown on Fig. 3B. A weak 3D peak is visible at 

compressions as low as 𝜀!! = −0.5%, however the increase in intensity from 0.8 to 1.0% 

compression dwarfs the evolution at lower compressions. The evolution of the integrated intensity, 

and the HWHM along K, are shown in panel C. At 𝜀!! = −1.0%, the HWHM is 𝜎)~0.002 r.l.u. It 

is resolution-limited along L (𝜎"~0.02 r.l.u). These correspond to respective (lower bounds for the) 

correlation lengths of 𝜉) =
&

%'(!
~80𝑏~310Å	 and 𝜉" =

&
%'("

~	8𝑐~94Å (the limitations of the 

scattering geometry did not permit investigation of 𝜉*). These correlation lengths are larger than 

the values reported under a field of 26 T. The correlation lengths of the 2D CDW at 1.0% 

compression are 𝜉)
%$~	16𝑏~65Å and 𝜉"

%$~	𝑐~12Å. To estimate the correlation volume Ξ =

𝜉* × 𝜉) × 𝜉", we estimate 𝜉*~	𝜉) for both the 2D and 3D CDWs. For the 3D order we find  

Ξ~51000 unit cells under uniaxial pressure for 𝑇~𝑇", exceeding by more than two orders of 

magnitude that of the 2D CDW at ambient conditions (Ξ~250 unit cells). 



The temperature evolution of the 3D CDW at 𝜀!! = −1.0% is shown in Fig. 3D-F. The 

peak is very strong at 60 K, and is weaker but still visible at 70 K. That is higher than the onset 

temperature of the 3D order observed under high field, and higher than the Tc of the unstressed 

sample. On the low-temperature side, strong competition with superconductivity is apparent. At 

T=41 K (i.e. below Tc), the peak at 𝑸#$ has already lost ~90% of the integrated intensity recorded 

at 50K and can hardly be distinguished from the background of the 2D order at lower temperatures. 

This is a much more rapid suppression than that seen for the 2D CDW (7). 

To gain further insights on the relationship between the 2D and 3D orders, we investigate 

the pressure and temperature dependence of the phonon modes in the inelastic part of the spectra. 

In Fig. 4A, we show the phonon spectra in the absence of applied pressure at T=50 K, along the (0, 

K, 7) direction. Well away from 𝑸#$ ,three peaks are visible. These are well reproduced in ab initio 

lattice dynamics calculations (SM), and correspond respectively to an acoustic phonon mode of the 

Δ′+ irreducible representation (35) at ~8 meV, two optical modes (Δ´& and Δ´+) at ~11 meV (which 

are not resolvable in the measurement), and another Δ´& optical mode at ~15 meV. It can be seen 

that, in the absence of strain, the acoustic mode softening associated with the 2D CDW (33), and 

shown at 𝑸%$	in Fig. 2A, extends along L and is visible at 𝑸#$.  

In Fig. 4B, we show the same spectra but with 𝜀!! = −1.0% and T = 41 K (to stay below 

Tc). Away from 𝑸#$, the spectra are essentially unchanged. Near 𝑸#$, on the other hand, a very 

strong phonon softening is observed, albeit not of the acoustic mode, which now disperses exactly 

as predicted by the ab initio calculations as K is swept through 𝑸#$. In other words, the Kohn 

anomaly seen in panel A, at T=50 K and 𝜀!! = 0%, is no longer present under 𝜀!! = −1.0%. This 

suppression of the acoustical Kohn anomaly can also be seen in Fig. 4C, where we show the L-

dependence of the phonon spectra from 𝑸%$ to 𝑸#$ for both 𝜀!! = 0 and 𝜀!! = −1.0%. Without 

pressure, the acoustical phonon is soft along the entire L-line, in agreement with the data in Fig. 

4A. At 𝜀!! = −1.0%, we can follow the hardening of the acoustical mode, i.e. the disappearance 

of the Kohn anomaly, as we traverse from 𝑸%$ to 𝑸#$. The mode that softens approaching 𝑸#$ is 

a distinct feature, that we therefore identify as one of the optical modes. Finally, in panel D and E 

we show the temperature dependence of the phonon modes at Q3D. At 70 K the phonon is already 

very soft, which indicates that, unlike the acoustical Kohn anomaly, the optical mode softening is 

not induced by superconductivity. At 50 and 60K, the soft phonon mode cannot be resolved from 

the elastic peak. In analogy with soft-mode-driven CDW order (e.g. in 2H-NbSe2 (36)), this 



suggests a complete softening of this mode. The mode hardens again below 50K, as the long-range 

CDW order disappears in the superconducting state. 

The unambiguous identification of the soft phonon among the 36 allowed optical modes 

(which are even more when considering the oxygen-superstructure) is not a trivial task. We note 

that, interestingly, both Δ′& and Δ′+ representations include an oxygen bond-stretching phonon 

around 60 meV (37) that exhibit pronounced dispersion anomalies close to 𝑸𝟑𝑫 (38). The buckling 

mode (Δ′&) also softens anisotropically along the 010 direction upon entering the superconducting 

state (39). Various scenarios have been discussed, attributing these anomalies to e.g. coupling of 

the phonons to dispersive collective charge excitations (40, 41) or to hybridization with lower 

energy branches of the same symmetry (42).  

Further work is required to determine which of these optical modes is driven soft under 

uniaxial pressure, whether the softening is complete (a continuous hardening of the soft-phonon 

upon cooling through Tc at 𝑸𝟑𝑫	cannot be completely ruled-out with the data at hand – see Fig. 4E) 

and to understand the mechanism yielding the disappearance of the acoustical phonon Kohn 

anomaly at 𝑸#$ . The absence of phonon softening in single-electron calculations indicates that 

electronic correlations need to be included in any theoretical treatment of the phonon softening and 

CDW formation (43). 

From a theoretical point of view, unidirectional CDW are unstable against disorder, and a 

vestigial nematic state is expected instead. It has previously been discussed how short-range biaxial 

modulation of the charge density might emerge from an intrinsic unidirectional CDW instability in 

presence of quenched disorder (23, 44, 45), which locally reorients small uniaxial domains. 

Inhomogeneous distribution of the disorder strength has been invoked (18) to explain the 

appearance of long range unidirectional 3D order alongside with an increase of the 2D order under 

large magnetic fields. In this model, although one might then expect the 3D order to grow at the 

expense of the 2D one, this process occurs on top of a general strengthening of CDW order as 

superconductivity is suppressed by the magnetic field, and inhomogeneity in the strength of 

disorder allows spatially-separated, coexisting domains of 2D and 3D order. 

Similarly, our new data indicate that strain tuning efficiently strengthen the CDW and 

supports the formation of the 3D order, likely primarily in those regions where the pinning strength 

is the weakest. It will be interesting to see in the future whether the strength of the 2D order does 

eventually decrease as strain is further increased. More generally, further theoretical work is 



required to understand the strain-induced strengthening of the CDW, which cannot be solely 

attributed to the competition with superconductivity because the 3D CDW peak can already be 

induced above the nominal 𝑇" of the sample.  

 We conclude by noting that uniaxial stress will allow the relationship between the 

superconductivity and CDW to be investigated with high precision in future experiments. A 

magnetic field suppresses type-II superconductivity inhomogeneously, due to the presence of 

vortices, resulting in broad transitions. In contrast, the homogeneous tuning provided by stress 

could for instance allow to determine using thermodynamic probes whether the CDW and 

superconductivity can coexist microscopically, for example in a ‘pair density wave’ state (46, 47). 

Our piezoelectric-based apparatus constitutes a versatile tool that can be implemented in a large 

variety of experimental setups, in particular at synchrotron facilities, thus opening new perspectives 

for the study of correlated-electron materials. 
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Fig. 1 Strain device (A) General view of the Piezo-electric device (B) Sectional cut of the device 
and picture of the Focused-Ion-Beam-thinned sample used for this experiment. (C) Unit cell of 
YBa2Cu3O6+x (here with x=1). Strain is applied perpendicular to the CuO chains. 
  



 

Fig. 2. Strain dependence of the IXS spectra around 𝑸𝟐𝑫. (A) IXS intensity vs momentum transfer 
for the unstrained sample at T < Tc. Square root of the intensity has been plotted to enhance the 
contrast between the phonon and the elastic line. The calculated dispersion of the low-lying 
acoustical mode is plotted as a dashed line. The plain line is a guide to the eye to the observed 
dispersion of this mode (fitted values are represented by the dots). (B) Same data as in (A), but for 
𝜀!! =	−1.0% (the stars indicate the energy of the soft optical phonon). (C) Strain-dependence of 
the quasi-elastic line intensity across 𝑸𝟐𝑫 along the (0, K,6.5) direction. (D) Strain dependence of 
the half-width-at-half-maximum and of the integrated intensity (normalized to the unstrained 
value) of the quasi-elastic line at 𝑸𝟐𝑫, integrated along K and normalized to the unstrained value. 
  



 

 

Fig. 3. Strain dependence of the quasi-elastic line at 𝑸𝟑𝑫. (A) Quasi-elastic intensity at T= 50 K 
along the (0 0.315 L) direction as function of a-axis compression 𝜀!!. (B) Quasi-elastic intensity at 
T= 50 K along the (0 K 7) direction as function of a-axis compression 𝜀!!. (C) Strain dependence 
of the HWHM and the integrated intensity along the (0 K 7) direction at T=50 K. (D) Temperature 
dependence of the quasi-elastic intensity along the (0 0.315 L) direction for 𝜀!! =	−1.0%. (E) 
Temperature dependence of the quasi-elastic intensity along the (0 K 7) direction for 𝜀!! =
	−1.0%. (F) HWHM and integrated intensities vs Temperature at 𝑸𝟑𝑫 for 𝜀!! =	−1.0%.   
  



  

 Fig. 4. Strain dependence of the phonon spectra around 𝑸#$. (A) Inelastic x-ray scattering 
intensity (elastic line has been subtracted (SM)) recorded below Tc along the (0 K 7) direction, in 
the absence of strain (at T = 50 K) and (B) for 𝜀!! =	−1.0% (T = 41 K). In both panels, the red 
lines represent the calculated structure factor of the phonons (SM), the gray arrows indicate the 
acoustical phonon, the red ones the soft optical mode. (C) L-dependence of the inelastic spectra 
below Tc without (open symbols – T =50 K) and with 𝜀!! =	−1.0% applied strain (closed 
symbols– T =41 K). The ticks correspond to the energy of the acoustical mode in the strained case, 
the arrows to that of the soft optical phonon. (D) Temperature dependence of the phonon spectra 
at 𝑸#$ for 𝜀!! =	−1.0%. Solid lines in panels (A)-(D) correspond to the least square fitting of the 
data (SOM) (E) Phonon energy vs temperature superimposed to the IXS intensity color map (log 
scale) at 𝑸#$	for 𝜀!! =	−1.0%. Dotted lines are guide to the eyes for possible scenarios for the 
temperature dependence of the soft-phonon energy.  


