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Purpose: Accurate baseline modeling is essential for reliable MRS analysis and 
interpretation—particularly at short echo-times, where enhanced metabolite infor-
mation coincides with elevated baseline interference. The degree of baseline smooth-
ness is a key analysis parameter for metabolite estimation, and in this study, a new 
method is presented to estimate its optimal value.
Methods: An adaptive baseline fitting algorithm (ABfit) is described, incorporating 
a spline basis into a frequency-domain analysis model, with a penalty parameter to 
enforce baseline smoothness. A series of candidate analyses are performed over a 
range of smoothness penalties, as part of a 4-stage algorithm, and the Akaike infor-
mation criterion is used to estimate the appropriate penalty. ABfit is applied to a set 
of simulated spectra with differing baseline features and experimentally acquired 2D 
MRSI—both at a field strength of 3 Tesla.
Results: Simulated analyses demonstrate metabolite errors result from 2 main 
sources: bias from an inflexible baseline (underfitting) and increased variance from 
an overly flexible baseline (overfitting). In the case of an ideal flat baseline, ABfit is 
shown to correctly estimate a highly rigid baseline, and for more realistic spectra a 
reasonable compromise between bias and variance is found. Analysis of experimen-
tally acquired data demonstrates good agreement with known correlations between 
metabolite ratios and the contributing volumes of gray and white matter tissue.
Conclusions: ABfit has been shown to perform accurate baseline estimation and is 
suitable for fully automated routine MRS analysis.

K E Y W O R D S

ABfit, automated, MRSI, open-source, spectral analysis, spline

1  |   INTRODUCTION

A number of key metabolites may be detected using 1H 
magnetic resonance spectroscopy (MRS), providing a non-
invasive measure of healthy and diseased brain tissue metab-
olism. Clinical applications include the assessment of brain 
tumors, metabolic disorders, and neonatal encephalopathy1,2 

where the concentration of certain metabolites may inform 
disease diagnosis or predict patient outcome. Further applica-
tions are present in the neuroscience and psychiatry domains, 
with particular interest in the direct detection of neurotrans-
mitter levels such as GABA and glutamate—which have been 
shown to be abnormal in Schizophrenia3 and modulate in re-
sponse to tasks.4,5
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MRS scans are typically performed at short (30 ms) or 
long (144 ms) TE’s, with short-TE scans being preferred due 
to reduced T2 relaxation and dephasing of multiplets result-
ing in improved metabolite detection sensitivity.6 However, 
short-TE scans are typically more susceptible to artifacts 
originating from insufficient water and scalp lipid suppres-
sion, in addition, broad signals from macromolecules also 
become enhanced.7 Residual water signals, lipid signals, 
and macromolecules all have the potential to bias metabo-
lite measurements due to spectral overlap and interference. 
Therefore, appropriate analysis methodology is particularly 
important to achieve the full benefit of MRS at short-TE.

Parametric fitting is currently the most widely used anal-
ysis method, and typically incorporates a set of simulated 
or experimentally measured metabolite and macromolecule  
signals—known as a basis set. An important distinction  
between analysis methods is their approach for mitigating 
metabolite estimation bias from broad signals not present in 
the basis set, usually referred to as “baseline modeling.” The 
true baseline should only contain artifacts, such as extrane-
ous lipid or water signals; however baseline modeling inac-
curacy results in signals being fully or partially attributed to 
the wrong source. One of the most popular baseline modeling 
methods incorporates a set of smooth spline functions into 
the fitting procedure, with additional smoothness imposed by 
penalizing greater baseline complexity. The LCModel8 and 
AQSES9 algorithms both use penalized spline baseline mod-
eling, with analysis performed in the frequency-domain and 
time-domain, respectively.

An alternative approach to baseline modeling exploits the 
rapid decay of baseline signals in the time-domain by omit-
ting the preliminary data points during the fitting process, 
reducing their interference with the more slowly decaying 
metabolites. The QUEST10 and TARQUIN11 methods both 
use this time-domain truncation approach. The FITT12 algo-
rithm combines the wavelet transform with Lowess filtering 
in the frequency-domain to separate metabolite and baseline 
signals. In addition to metabolite signals, it is often benefi-
cial to add known lipid and macromolecular signals to the 
basis set—particularly for the analysis of short-TE MRS.13 At 
the time of writing, the LCModel and TARQUIN algorithms 
include a set of these signals by default, whereas QUEST, 
AQSES, and FITT require these signals to be manually  
appended to the metabolite basis.

Control over the level of baseline flexibility (or smooth-
ness) is a common and necessary requirement of each of the 
baseline modeling methods outlined above. In spline-based 
approaches, a combination of the number of spline func-
tions for a given frequency range and the smoothness pen-
alty parameter control the baseline flexibility. For LCModel, 
the frequency spacing between the spline basis functions is 
dependent on data quality, and is set to a maximum of 1.5 

times the estimated full width at half maximum (FWHM) 
of the metabolite resonances or 0.1 ppm.8 Similarly, for 
the FITT algorithm, a fixed Lowess filter smoothing value 
is used and wavelet coefficients with scales less than twice 
the FWHM are excluded from the baseline model to ensure 
smoothness.12 In the time-domain truncation approach, base-
line flexibility is primarily determined by the number of 
initial data points to be omitted from the fit evaluation. For 
QUEST and TARQUIN, the number of truncated data points, 
and therefore degree of baseline flexibility, is set at a default 
value that may be adjusted by the user.

Automated methods to determine the correct degree of 
baseline flexibility are important for obtaining accurate me-
tabolite levels independently of the analyst. Furthermore, the 
manual adjustment of baseline flexibility for each individual 
spectrum is impractical for MRSI studies—where hundreds 
of spectra may be acquired in a single scan. While LCModel 
provides automated adjustment of baseline flexibility, a 
growing number of analysts choose to manually override the 
default analysis settings by adjusting the spline spacing pa-
rameter (DKNTMN). The first reported use of this manual 
adjustment was to improve the modeling of macromolecular 
resonances in rat brain at 9.4 T.14 More recently, this parame-
ter has been adjusted to encourage flatter baselines,15-17 sug-
gesting the default LCModel baseline flexibility may not be 
optimal in some cases.

Finding the optimal degree of baseline flexibility is a cru-
cial question in MRS analysis research, yet few studies have 
investigated this topic in detail. Using simulated data, Ratiney 
et al demonstrated how the interference between metabolite 
and baseline signals was reduced by increasing the number 
of omitted data points, but this came at the cost of inflating 
errors due to noise.18 More recently, Near et al showed how 
the estimated baseline in LCModel may depend strongly on 
spectral SNR and metabolite FWHM, and that errors caused 
by baseline instability may dominate over errors from spec-
tral noise in some cases.19 The influence of baseline flexi-
bility has also been explored using experimentally acquired 
data, with a recent study demonstrating a 15% difference in 
metabolite levels when comparing between a default and 
less flexible baseline model.20 Baseline flexibility has also 
been shown to have a strong influence of the measurement of 
2-hydroxyglutarate.21

In this study, we introduce a new method to automati-
cally determine the optimal degree of baseline flexibility 
for a frequency-domain spline-based fitting algorithm. First, 
background is given on the use of penalized splines for op-
timal data smoothing. A fully automated fitting algorithm 
is presented, incorporating a novel method to automatically 
estimate the optimal level of baseline flexibility. Finally, the 
new method is validated with simulated and experimentally 
acquired MRSI data.
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2  |   THEORY

2.1  |  Penalized spline smoothing

Baseline signals have a characteristically smooth spectral 
appearance, and must be accurately modeled to avoid bias-
ing metabolite estimates. In good quality 1H MRS of brain 
tissue baseline signals have a low intensity, relative to the 
primary metabolite resonances, and are therefore chal-
lenging to estimate in the presence of noise. Estimating a 
smooth function from noisy data are known in statistics as 
“scatterplot smoothing,” and a number of approaches have 
been developed.22 In this section, we briefly outline the 
method of penalized splines in the simpler context of scat-
terplot smoothing, before describing their use as part of an 
MRS fitting algorithm.

A spline is a piecewise function made up of one or more 
polynomial segments joined together at points known as 
“knots.” A wide range of spline functions are possible; how-
ever, Basis-splines, more commonly known as B-splines, 
are a popular choice for smoothing applications due to their 
favorable numerical properties.23 The degree of a B-spline 
function determines its overall smoothness, and third degree 
(or cubic) B-splines are often used for smoothing. A cubic 
B-spline basis is show in Figure 1A with an offset added 
in the y-axis for clarity. B-spline bases consist of regularly 
spaced overlapping spline functions, spanning the full range 
of x values.

A B-spline basis may be used to obtain a smooth estimate 
of a signal using simple linear regression. Figure 1B shows 
the result of a spline regression, where each spline func-
tion has been optimally weighted, such that the sum of the 

functions (spline fit line) is the least squares fit to the data. 
The desired smoothness of the fit is controlled by adjusting 
the spline knot spacing, which in turn changes the density of 
spline functions. In the case of Figure 1B, 15 functions were 
found to give a reasonable level of smoothness. Increasing 
the density of spline functions allows more detail to be cap-
tured by the fit; however, too many functions results in an 
increased sensitivity to noise and the smooth estimate begins 
to exhibit random fluctuations. Conversely, insufficient den-
sity of spline functions results in the spline fit being unable to 
model genuine smooth trends present in the data.

An alternative to adjusting the number of spline basis 
functions to achieve a desired level of smoothness is to intro-
duce a penalty parameter into to spline regression model. The 
smooth estimate ŷ, of our data y, is calculated as: ŷ = B â, 
where B is a B-spline basis in matrix form and â is a vector of 
corresponding spline weightings to be determined. In simple 
spline regression, â is found by solving the normal equations 
to minimize the sum of the squared differences between y and 
ŷ. In penalized spline regression, the minimization function 
QB is adjusted to incorporate an additional term to enforce 
smoothness in the estimate: 

The λ parameter controls the degree of smoothness by pe-
nalizing solutions for â that interact with the difference matrix 
D. The difference matrix may be constructed to penalize the 
first, second, or higher orders of differences between â val-
ues. Here, we exclusively use a second-order difference ma-
trix, which is particularly effective for modeling the smooth 
baseline features typically found in MRS data. 

(1)QB =‖y−B â‖2
2
+𝜆‖D â‖2

2
.

F I G U R E  1   A, Cubic B-spline basis of 15 components with each component offset vertically to reduce overlap. B, P-spline regression of a 
noisy signal with an underlying smooth trend
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An example of the second-order difference matrix is 
given in (2), which shows how increased differences between 
adjacent weighting factors in â consequently increase the 
penalty term in Equation (1). The minimization function QB 
represents a compromise between minimizing the fit residual 
and smoothness, where a value of zero for λ results in simple 
spline regression. Larger values of λ encourage a smoother 
ŷ, to the point where ŷ becomes a straight line fit for very 
large penalties when using a second-order difference matrix. 
Approximately linear baselines, encouraged by a second-or-
der difference matrix, act as a good model for the tails of the 
residual water resonance typically found in MRS data. The 
solution to Equation (1) may be found by row-wise concate-
nation (augmentation) of B and 

√
�D, and appending zeros 

to y to match the number of combined rows: 

and regressing the augmented y vector on the augmented B  
matrix to yield â.

The general approach for penalized spline regression is 
to over-specify the number of B-spline basis functions, and 
primarily control the smoothness through the adjustment of 
λ acting on a difference matrix. We refer to this approach as 
“P-splines,” first introduced by Eilers and Marx.24 While the 
value of λ has a direct effect on smoothness, it is an unintui-
tive parameter to interpret, as the optimal value often varies 
by several orders of magnitude. In addition, λ has a complex 
dependence on the density of the spline functions, the num-
ber of data points and other factors unrelated to smoothness. 
A more intuitive measure of the smoothness of a P-spline 
model is known as the effective dimension (ED), proposed 
by Hastie and Tibshirani.25 For a given value of λ, B-spline 
basis B and difference matrix D, we calculate ED as follows: 

 

where �� denotes the trace of a matrix. For a small value 
of λ, ED approaches the number of spline functions in the 
basis B, and for large values, ED approaches 2 when using 

a second-order difference matrix since a straight line fit 
has 2 degrees of freedom: the gradient and the y-intercept. 
Similarly, a heavily penalized first-order difference matrix 
approaches an ED of 1, resulting in a perfectly horizontal 
baseline with 1 degree of freedom corresponding to the y- 
intercept value. Note, in contrast to the LCModel parame-
ter for adjusting baseline flexibility (DKNTMN), a smaller 
value of ED corresponds to a smoother baseline estimate.

Using simulated data, we investigate the relationship be-
tween λ, ED and the optimal level of smoothness. The top left 
panel in Figure 2A shows a simple sine function with added 
normally distributed noise, shown in red and black, respec-
tively. Candidate P-spline smoothers, with differing values of 
λ, are shown in the remaining 5 panels. Since the true shape 
of the underlying smooth function is known, the error of the 
P-spline estimate may be calculated as the sum of squared 
differences between the true function and the estimate. A plot 
of the error as a function of λ is shown in Figure 2B. The 
sum of squared differences between the P-spline estimate and 
noisy data (residual) and the ED are also shown as a function 
of λ in part B.

Inspection of the error plot reveals the optimal λ to be ap-
proximately 20—corresponding to an ED value of 12, and this 
can be intuitively verified from part A. For larger values of λ, 
the estimate approaches a straight line fit—failing to capture the 
details in the sine cure and resulting in an increasing fit residual 
and fit error (part B). Models with insufficient freedom to adapt 
to genuine trends in the data result in biased estimates, and this 
is known as “underfitting.” Conversely, too much freedom in 
the smoothing model (small λ) results in the estimate becom-
ing overly sensitive to random fluctuations in the data, resulting 
in “overfitting.” In least-squares fitting, there is a temptation 
to equate the smallest residual with the optimal fit, however 
Figure 2B clearly shows an increase in the error for λ values of 
less than 20—despite a steady reduction in the residual.

Determining the optimal value for the smoothness 
parameter is one of the primary challenges for P-spline 
smoothing. A careful balance between instability from 
overfitting, and bias from underfitting, must be made for 
the most accurate estimate, and searching for the smallest 
fit residual is a useful, but insufficient metric of quality. 
Numerous approaches have been proposed to find the opti-
mal smoothing value,22 and in this study, we use Akaike’s 
information criterion (AIC)26: 

where  ln  denotes the natural logarithm and n is the number 
of data points. The AIC is typically used to compare models, 
with lower values indicating an improved balance between 
bias and instability. A commonly used alternative is known as 
the Bayesian information criterion (BIC), however the AIC 
is chosen here for its simpler form, which may be intuitively 

(2)
D=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −2 1 0 0 0 …

0 1 −2 1 0 0 …

0 0 1 −2 1 0 …

0 0 0 1 −2 1 …

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥⎥⎥⎥⎥⎥⎦

(3)

�
y

0

�
≈

�
B√
𝜆 D

�
â=

�
ŷ

0

�
,

(4)H=

�
B√
� D

�−1 �
B

0

�
,

(5)��= ��(H),

(6)���= ln
�‖y− ŷ‖2

2

�
+2��∕n,
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modified—as shown in the following section. A plot of the AIC 
as a function of λ is shown in the lower panel of Figure 2B, and 
the λ value with the lowest AIC shows good agreement with the 
true minimum error.

2.2  |  MRS baseline estimation using 
P-splines

In 1H MRS analysis, the baseline signal must be estimated in 
the presence of numerous overlapping metabolite, lipid and 
macromolecule signals. Fortunately, these non-baseline sig-
nals have a known molecular origin and are therefore well 
characterized and accurately simulated from established pa-
rameters.27 We can update Equation (3) to incorporate these 
additional molecular components by arranging into columns 
of the basis matrix M, and appending to the P-spline basis B: 

As with Equation (3), we regress the basis matrix on y 
to yield â; however, since metabolite signal amplitudes are 
always positive, analysis stability may be improved by en-
forcing a non-negative constraint on the subset of â values 
corresponding to the weightings on the basis set M (âM ≥ 0).  
The active-set method developed by Lawson and Hanson28 
is used herein to find the least-squares solution under the 
non-negative constraint—while still allowing the â values 
corresponding to the spline basis (âB) to remain uncon-
strained. Note that starting values are not required for any of 
the metabolite, macromolecular, lipid, or spline basis func-
tion amplitudes when using this method.

A simulation study was performed to investigate the re-
lationship between baseline smoothness, the accuracy of 
metabolite estimates and the AIC. Metabolite signals were 
simulated from known parameters27 at levels consistent with 
normal brain tissue29—listed in Supporting Information 
Table S1. An experimentally derived macromolecule profile 
was also included in the simulation and basis matrix to yield 
a realistic spectrum.30 This profile was comprised of multiple 
broad resonances combined with fixed relative intensities, and 

(7)

�
y

0

�
≈

�
B M√
𝜆 D 0

�
â=

�
ŷ

0

�
,

F I G U R E  2   A, Penalized spline smoother applied to a simulated sine function over a range of smoothness penalties λ. B, Plots of the fit 
residual, smoother effective dimension (ED), fit error, and Akaike information criterion (AIC) as a function of λ
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corresponded to only one element in the basis set. Simulated 
experimental conditions consisted of a field strength of 3 T, 
and semi-LASER localization (TE = 28 ms). A total of 1024 
complex points were generated at a sampling frequency of  
2000 and 6 Hz Gaussian line-broadening was applied prior 
to zero-filling to 2048 points and Fourier transform to the 
frequency-domain. Ideal pulses were assumed and relaxation 
effects were not considered.

Ideal spectra were distorted with normally distributed 
noise resulting in a spectral SNR of 54—typical for 1H MRS 
acquired from the human brain at 3 T. Signal strength was 
measured as the highest data point from the nominal NAA 
singlet peak at 2.01 ppm. A broad Gaussian resonance was 
added at 1.3 ppm with a linewidth of 100 Hz to simulate base-
line distortion originating from scalp lipids. The degree of 
P-spline baseline flexibility is defined as the baseline ED (ef-
fective dimension) per ppm, which is more easily compared 
across analyses due to its independence from the number 
of points in the fit and the number of spline basis functions 
used. For example, an ED per ppm of 5 corresponds to an ED 
value of 19 when fitting the spectral region between 4 and  

0.2 ppm (5  ×  (4-0.2)). Metabolite level estimates (â) were 
calculated using Equation (7) from real-valued data points in 
spectral region between 0.2 and 4 ppm, over a range of 10 lev-
els of baseline flexibility. Thirty-two spectra were analyzed at 
each level of baseline flexibility, with only the noise samples— 
drawn from the same distribution—randomly differing be-
tween each spectrum. The metabolite estimation error was 
calculated from the sum of the squared differences be-
tween the true amplitudes, listed in Supporting Information  
Table S1 (a), and estimated values (â) for each spectrum. 
Errors in the estimation of macromolecular or lipid signal am-
plitudes in the basis set were not considered. The mean and 
standard deviation of metabolite estimation errors was calcu-
lated across the 32 spectra at each level of baseline flexibility 
to evaluate accuracy and consistency. Error values are pro-
vided in absolute units as further scaling was not performed.

Metabolite estimation errors are shown in Figure 3A, dis-
playing a comparable shape to the simpler model in Figure 2B.  
Over the range of baseline flexibility studied, underfitting 
with an inflexible baseline results in much greater metabo-
lite estimate errors compared to overfitting—which can be 

F I G U R E  3   P-spline MRS baseline estimation of simulated data with a broad artifact at 1.3 ppm. A) metabolite estimate error as a function of 
baseline flexibility. Error bars represent standard deviations, increased by a factor of 5 to aid visualization. B) AIC and modified-AIC as a function 
of baseline flexibility. C)-F) Fit results with the baseline shown (black) underlying the simulated data (black) and fit (red). The fit residual is shown 
above the data and fit results are presented for the following values of baseline ED per ppm: C) 1, D) 4.2, E) 6.0, F) 25
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verified by inspecting the fit result plots in Figure 3 parts C-F. 
Good agreement is also seen between the metabolite estimate 
error and the AIC curve (part B), with a low AIC value cor-
responding to the most accurate level of baseline flexibility.

From the results presented in following sections, it was 
found that the AIC had a tendency to slightly overestimate 
the optimal level of baseline flexibility, and that a simple 
modification to Equation (6) improved accuracy: 

Setting m to a value of 5 was empirically found to be a 
good compromise between bias and variance for all simulated 
and in vivo analyses presented herein. The value was kept 
constant for all analyses presented, placing a greater penalty 
on overly flexible baseline models—resulting in a smoother 
baseline estimate relative to the standard AIC (Figure 3B).

3  |   METHODS

3.1  |  Adaptive baseline fitting algorithm

In this section, we describe a fully automated 1H MRS analy-
sis method based on the P-spline fitting approach presented in 
the Theory section. The emphasis of the design is to automat-
ically adapt the baseline flexibility for improved accuracy, 
and we refer to the full algorithm as: Adaptive Baseline fitting 
or ABfit. The algorithm consists of 4 main steps, which will 
be described in order of execution: 

1.	 Coarse frequency alignment.
2.	 Approximate iterative fitting.
3.	 Baseline smoothness estimation.
4.	 Detailed iterative fitting.

3.1.1  |  Coarse frequency alignment (step 1)

Unprocessed MRS data typically have an unknown and er-
roneous frequency offset fo that displaces all resonances 
equally. The first step of ABfit is to estimate fo (measured 
in Hz) to ensure the basis set of known signals are approxi-
mately matched to the acquired data. Raw MRS data is digi-
tally sampled at a frequency of fs Hz in the time-domain, and 
defined a vector of N complex data points: 

 

where superscript TD and FD denote time and frequency- 
domain signal representations—calculated with the discrete 
Fourier transform. We simulate a reference data set rTD, with 
twice the number of data points 2N sampled at fs, containing 
3 resonances corresponding to the main singlet metabolites 
typically present in 1H MRS data at 2.01, 3.03, and 3.22 ppm. 
Three resonances are used to ensure the method is appropriate 
for clinical MRS data, where NAA levels may be very low or 
absent. The acquired data yTD are zero-filled to twice the orig-
inal length to increase spectral resolution—before convolving 
with rTD to estimate the frequency offset fo.

8

3.1.2  |  Approximate iterative fitting (step 2)

The goal of this stage of the algorithm is to find estimates of 
the 3 parameters with the largest influence on the fit residual: 
(a) the signal phase �0; (b) an approximate lineshape param-
eter dg; and (c) an improved estimate of fo. The phase and 
frequency offset are applied to the acquired data as follows: 

The lineshape parameter applies Gaussian line-broaden-
ing to each signal in the basis set M, and the scaling factor 
β is introduced to define dg as the FWHM measured in Hz: 

 

where * denotes element-wise multiplication of the 
line-broadening function for each column of the basis matrix. 
A simple, one parameter, lineshape model was chosen for this 
step to reduce the chance of poor solutions being found by the 
optimizer due to the presence of local minima. Gaussian line-
shape broadening was applied to all signals in the basis set M,  
including macromolecules. Metabolite signals in this paper 
were simulated with pure Lorentzian lineshape to model 
T2 relaxation—resulting in a Voigt lineshape following the 
Gaussian broadening applied in this step.31 Combining the 
modified basis with the P-spline basis, and solving for â in 
the least-squares sense with the same constraints as the pre-
vious section: 

Note that following parametric modification in the time- 
domain, the data and basis of known signals are zero-filled 

(8)����= ln
�‖y− ŷ‖2

2

�
+2m ��∕n.

(9)yTD =y(t), t= (t1 =0, t2 =1∕fs, … , tN = (N−1)∕fs),

(10)

yFD =y(f), f= (f1 =−fs∕2, f2 =−fs∕2+ fs∕N, … , fN = fs∕2− fs∕N),

(11)yTD =yTDei�0+2i�fot

(12)�=−
(�dg∕2)2

ln (1∕2)
,

(13)MTD =MTD ∗ e−�t2

,

(14)

�
yFD

s

0

�
≈

�
B MFD

s√
𝜆 D 0

�
â=

�
ŷ

0

�
.
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to twice their original length before being transformed to  
the frequency-domain. Only the real-valued data points in fre-
quency domain between 1.8 and 4 ppm are fit in this stage 
of the algorithm (denoted by subscript s) to reduce the influ-
ence of any contaminating lipid signals around 1.3 ppm. The 
parameters: �0, dg, and fo are estimated using the Nelder-Mead 
simplex algorithm with bound constraints,32 minimizing: 

A λ value corresponding to 1 ED per ppm is used with 
a P-spline basis containing 15 spline functions per ppm, 
resulting in a total of 33 (15 × (4-1.8)) components in the 
basis B, with the same density of spline functions being 
used for all subsequent steps. A value of 1 ED per ppm 
was empirically found to work well with all data presented 
herein, however may need to be adjusted for spectra with 
fundamentally different levels of baseline complexity—
such as 31P MRS. Constraints are placed on the optimi-
zation algorithm to restrict the linebroading parameter to 
be positive and produce additional broadening of less than 
15 Hz FWHM. The frequency offset is also constrained to 
be ±10 Hz different from the coarse frequency alignment 
(step 1).

3.1.3  |  Baseline smoothness estimation  
(step 3)

Following the determination of the frequency offset, spectral 
phase, and approximate lineshape, the next step of ABfit is 
to estimate the optimal value for λ. A set of candidate fits 
are automatically performed with differing level of baseline 
smoothness, while maintaining the 3 main fitting parameters 
constant at their optimized values—as determined in the 
previous step. The maximum candidate baseline flexibility 
is set to a λ value corresponding to 7 ED per ppm, and the 
minimum value set to an ED of 2— equivalent to straight line 
fit. 20 candidate fits are performed with logarithmic intervals 
between the maximum and minimum values of ED per ppm, 
where λ is back calculated from Equations (4) and (5), and 
the mAIC is calculated for each fit (Equation 8). The opti-
mal λ value, and therefore ED per ppm, is found by selecting 
the candidate fit with the lowest mAIC. In contrast to the  
previous step, a wider spectral range of 0.2-4 ppm is  
analyzed to include the majority of conventionally measured 
metabolites— corresponding to 57 spline functions.

3.1.4  |  Detailed iterative fitting (step 4)

In the final stage of ABfit, the overall lineshape model 
is refined alongside fo, �0 and minor adjustments to the 

frequencies and linewidths of the known basis signals. An 
asymmetric lineshape model is generated in the frequency-
domain by smoothly adjusting the Gaussian linewidth param-
eter as a function of frequency—as described by Stancik and 
Brauns33: 

 

Note the frequency dependence on the linewidth function 
is eliminated when the asymmetry parameter ag = 0, leading 
to s = dg and pure Gaussian broadening. lFD is transformed 
to the time-domain and applied to each of the basis signals 
in M.

Minor individual changes in the frequency offset and line-
width are applied to each molecular signal in the basis to ac-
commodate variations in the acquired data: 

where fi is a column vector of frequency adjustments measured 
in Hz, and di a column vector of additional Lorentzian line 
broadening terms measured at FWMH in Hz. Both parameter 
vectors fi and di are the same length as the number of basis sig-
nals in M. Each of the global ( fo, �0, dg, ag), and signal-specific 
(fi, di) parameters are estimated using the Levenberg-Marquardt 
algorithm34 implemented with bound constraints, with the same 
objective function defined in Equations (14) and (15). The op-
timal baseline smoothness parameter λ, (determined in step 3) 
is used, and the spectral range of 0.2-4 ppm included in the it-
erative optimization procedure. The same parameter constraints 
were used as in step 2, with the additional lineshape asymme-
try parameter ag being bound between ±0.25, fi bound between  
±1 Hz and 2≥di ≥0 Hz.

3.2  |  Validation with simulated data

A series of simulations were performed to evaluate the per-
formance of ABfit across a range of common baseline fea-
tures. For each test, ABfit was performed as described in 
the previous section—where the baseline flexibility is auto-
matically determined in step 3. Additionally, ABfit was per-
formed with the baseline flexibility set manually (omitting 
step 3) across a range of 15 values for ED per ppm between 
0.53 and 15 to compare with the automated result. Simulated 
spectra and metabolite estimation errors were calculated as 
described in section MRS baseline estimation using P-splines 
unless stated otherwise.

(15)‖yFD

s
− ŷ‖2.

(16)lFD =

√
4 ln 2

�
exp

[
−4 ln 2

(
f

s(f)

)]
,

(17)s(f)=
2dg

1+exp (ag f)
.

(18)MTD =MTD ∗ lTD ∗ e(2i�fi−�di)t,
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An experimentally derived macromolecule profile, com-
prised of multiple broad resonances combined with fixed 
relative intensities, was included in the simulations to yield 
a realistic spectrum.30 The same macromolecular profile 
was included in the fitting basis set as a single element for 
all simulation tests other than fourth and fifth—where a 
commonly used set of 9 individual lipid and macromole-
cule signals were used in place of the true profile (listed in 
Supporting Information Table S2). Note the frequencies and 
linewidths of the main macromolecular resonances are only 
approximately matched between the experimentally derived 
macromolecular profile and the set of 9 individual lipid and 
macromolecule signals.

In the first simulation study, a broad simulated peak with 
a Gaussian lineshape (FWHM 100 Hz) at 1.3 ppm was com-
bined with metabolites and the macromolecular signal with 
a spectral SNR of 54 (Figure 4 and Supporting Information 
Figure S1). The second simulation study was identical to 
the first; however, the broad simulated peak was removed 
to yield a perfectly flat baseline (Figure 5 and Supporting 

Information Figure S2). The third simulation study was 
identical to the first, however the amplitude of the simulated 
broad resonance was increased by a factor of 2 (Figure 6 and 
Supporting Information Figure S3). The data for the fourth 
simulation study were identical to the second, with a perfectly 
flat baseline and an experimentally derived macromolecular 
signal (Figure 7 and Supporting Information Figure S4).  
However, the experimentally derived macromolecular sig-
nal was removed from the fitting basis set and replaced with 
the set of simulated lipid and macromolecular signals com-
monly used by default in the LCModel and TARQUIN al-
gorithms (listed in and Supporting Information Table S2). 
The fifth simulation study was identical to the fourth, with 
the exception of an additional broad simulated peak with a 
Gaussian lineshape (FWHM 100 Hz) at 1.3 ppm (Figure 8 
and Supporting Information Figure S5). The final simulation 
study was identical to the first, however 12 Hz linebroading 
was applied to each signal in the basis set (rather than 6 Hz)—
resulting in a spectral SNR of 34 (Figure 9 and Supporting 
Information Figure S6).

F I G U R E  4   ABfit analysis results for simulated data with a broad baseline distortion at 1.3 ppm. A, metabolite estimate error of ABfit, 
with the automatically determined level of baseline flexibility (4.1 ED per ppm) shown as a dashed vertical line. Errors values are plotted on a 
logarithmic scale for clarity. ABfit results with baseline flexibility of B, 0.5, C, 4.1, and D, 15.0 ED per ppm
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3.3  |  Validation with experimentally 
acquired data

While simulation studies are important to assess the true ac-
curacy of a method, it is challenging to adequately model the 
true range of variation present in MRS data. Therefore, ABfit 
was tested on experimentally acquired MRSI data to ensure 
validity and robustness to common artifacts—such as base-
line distortions from scalp lipids, shimming variations and 
minor shifts in metabolite frequency.

MR data were acquired from 2 healthy adults with a 3 T 
Siemens Magnetom Prisma (Siemens Healthcare, Erlangen, 
Germany) system using a 32-channel receiver head coil- 
array. T1-weighted MRI was acquired with a 3D-MPRAGE 
sequence: FOV = 208 × 256 × 256 mm, resolution = 1 × 1 ×  
1 mm, TE/TR = 2 ms/2000 ms, inversion time = 880 ms, 
flip angle = 8 degrees, and GRAPPA acceleration factor = 2. 
MRSI data were acquired using 2D MRSI: FOV = 160 × 160 ×  
15 mm, nominal vo×el resolution 10 × 10 × 15 mm, TE/TR =  
40 ms/2000 ms, comple× data points = 1024, sampling 

frequency = 2000 Hz. The MRSI slice was aligned axially in 
the subcallosal plane with an approximately 1 mm gap from 
the upper surface of the corpus callosum. The semi-LASER 
method35 was used localize a 100 × 100 × 15 mm ROI, cen-
tral to the FOV, 4 saturation regions were placed around the 
ROI prescribing a 100 × 100 mm interior, and an addition 4 
saturation regions were positioned to intersect the 4 corners 
of the semi-LASER ROI to provide additional scalp lipid 
suppression. The total MRSI acquisition time was 5 minutes 
and 6 seconds.

Following acquisition, the 4 corner voxels were excluded 
from the central 8 by 8 grid due to their close proximity to 
the diagonal saturation regions, and ABfit was performed 
on the remaining 60 voxels. ABfit was applied without any 
manual adjustments, and exactly the same algorithm was 
used to analyze the simulated and acquired data. The per-
centage of white matter, gray matter and CSF contribution 
to each voxel was measured from segmentation of the T1 
MRI using the FAST method36 as implemented in the FSL 
software package (v6.0.1). The gray matter fraction was 

F I G U R E  5   ABfit analysis results for simulated data without baseline distortion. A, metabolite estimate error of ABfit, with the automatically 
determined level of baseline flexibility (0.53 ED per ppm) shown as a dashed vertical line. ABfit results with baseline flexibility of B, 0.53, C, 4.5, 
and D, 15.0 ED per ppm
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calculated as the percentage volume of gray matter divided 
by the sum of gray and white matter volumes, and com-
pared with metabolite ratios.

The acquisition of human data included in this study was 
conducted with the approval of an Institutional Ethics Board.

4  |   RESULTS

4.1  |  Simulation

The first simulation test contained a baseline distortion to 
mimic a spurious signal from scalp lipids, and the results 
of ABfit analyses are shown in Figure 4 and Supporting 
Information Figure S1. The metabolite estimation error plot 
as a function of baseline flexibility shows the same charac-
teristics as the simpler analysis model used in Figure 3A; 
however, the errors are elevated due to the increased num-
ber of parameters in the ABfit model—necessary to handle 
variations common in acquired MRS data, such as phase and 

linewidth. The automated estimate for the baseline flexibil-
ity (dashed vertical line) represents a reasonable trade-off 
between bias introduced by insufficient flexibility (part B) 
and instability—evidenced by increasing standard deviation 
error bars for greater baseline flexibility (part D). A fit corre-
sponding to the automatically determined baseline flexibility 
is shown in part C, where the true shape of a broad Gaussian 
peak centered at 1.3 ppm is apparent from the baseline esti-
mate. A comparison between the true and estimated baseline 
components is shown in Supporting Information Figure S1 
part C with the largest errors shown around 1.3 and 4 ppm. 
These spectral frequencies correspond to the lactate and ala-
nine resonances which have been overestimated (part B) due 
to their overlap with the strong baseline artifact and noise.

The baseline distortion was removed for the second simu-
lation study to test the ABfit approach for ideal spectra where 
the basis set alone is sufficient for accurate analysis. The 
error plot is shown in Figure 5, illustrating the absence of 
bias due to baseline underfitting. A compromise between bias 
and variance is unnecessary in the ideal case, as the correctly 

F I G U R E  6   ABfit analysis results for simulated data with a broad baseline distortion at 1.3 ppm with twice the amplitude compared to Figure 4.  
A, metabolite estimate error of ABfit, with the automatically determined level of baseline flexibility (5.1 ED per ppm) shown as a dashed vertical 
line. Errors values are plotted on a logarithmic scale for clarity. ABfit results with baseline flexibility of B, 0.5, C, 5.1, and D, 15.0 ED per ppm
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determined baseline flexibility has the lowest error and vari-
ability. Compared to the first simulation study, the metabo-
lite errors are much smaller and may be attributed to noise 
(Supporting Information Figures S1 vs S2 part B).

In the third simulation test, the amplitude of the broad dis-
tortion at 1.3 ppm was doubled compared to the first. A rea-
sonable estimate of the optimal baseline flexibility is found 
using the ABfit method (Figure 6A) with comparable levels 
of accuracy relative to the reduced amplitude baseline distor-
tion (Figure 4A). Supporting Information Figure S3 parts B 
and C show the largest metabolite errors for lactate and ala-
nine due to their strong overlap with the baseline distortion 
at 1.3 ppm.

In the fourth simulation test, a set of independent broad 
lipid and macromolecular signals in the basis were used to 
model the experimentally derived macromolecular profile. 
Figure 7A shows the lowest mean errors are obtained at 
higher levels of baseline flexibility (part D)—indicating a 
stronger bias at lower level of flexibility (parts B, C) com-
pared to the previous simulations. This is likely explained 

by inadequate modeling of the broad macromolecular com-
ponents around 3.8 ppm since these are not present in the 
commonly used individual macromolecular and lipid basis 
(Supporting Information Table S2). Supporting Information 
Figure S4 part D shows a much larger discrepancy between 
the experimentally derived macromolecular profile used to 
simulate the data “true” and the estimate “est.” compared to 
the previous simulation results. A combination of metabo-
lites (part B) and baseline contributions (part C) are used to 
model the discrepancy in the macromolecular signal compo-
nents—resulting in increased metabolite errors.

The fifth simulation test was the same as the fourth, except 
a broad baseline distortion was added at 1.3 ppm. Figure 8  
shows a baseline flexibility of 4.1 ED per ppm was necessary 
to model the baseline distortion at 1.3 ppm and the macro-
molecular components at 3.8 ppm not present in the basis 
set. Supporting Information Figure S5 part D shows a greater 
level of modeling error for the macromolecular components 
around 1.3 ppm when compared to the previous simulation 
test, due to their overlap with the baseline distortion.

F I G U R E  7   ABfit analysis results for simulated data without baseline distortion, but with the true macromolecular basis signal replaced with 
individually simulated lipid and macromolecular signals. A, metabolite estimate error of ABfit, with the automatically determined level of baseline 
flexibility (1.9 ED per ppm) shown as a dashed vertical line. ABfit results with baseline flexibility of B, 0.5, C, 2.0, and D, 15.0 ED per ppm
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In the final simulation test, the first test was repeated with 
broader metabolite signals to evaluate the efficacy of the 
automated baseline determination for poorly shimmed data. 
Errors are larger compared to the first test, due to the reduc-
tion in SNR and spectral resolution; however a reasonable es-
timate of the optimal baseline flexibility of approximately 4 
ED per ppm is found (Figure 9A). The primary source of me-
tabolite error is shown in Supporting Information Figure S6  
part B, where the lactate and alanine signals are confused 
with the baseline distortion to a greater degree compared to 
the first simulation test.

4.2  |  Experimental

Significant scalp lipid contamination was found in some 
of the voxels from the first MRSI scan, most likely result-
ing from subject movement between the T1 anatomical and 
MRSI acquisition. ABfit result plots are shown in Figure 10 

for a row of 8 voxels spanning the localization region—show-
ing a high level of baseline distortion (part A) which becomes 
increasingly reduced for voxels further from the source. The 
automatically determined level of baseline flexibility corre-
lates well with the severity of the distortion, and no signifi-
cant spurious signals are present in the fitting residual.

High-quality MRSI was acquired for the second scan with 
only minimal baseline distortion observed across all ana-
lyzed spectra. A strong correlation between metabolite levels 
and the underlying tissue contribution is visually apparent 
from Supporting Information Figure S7 part A, with an in-
creased tNAA/tCr ratio in white matter compared to gray 
matter (tNAA = NAA + NAAG, tCr = PCr + Cr, tCho = 
GPC + PC, Glx = Glu + Gln). A linear regression of select 
metabolite ratios with the gray matter fraction is plotted in 
Supporting Information Figure S7 parts B, C, and D, with 
strong correlations observed—in good agreement with high 
field observations.37,38 The mean FWHM resolution across 
the voxels analyzed was 0.032 ppm (3.9 Hz), measured from 

F I G U R E  8   ABfit analysis results for simulated data with a broad baseline distortion at 1.3 ppm and the true macromolecular basis signal 
replaced with individually simulated lipid and macromolecular signals. A, metabolite estimate error of ABfit, with the automatically determined 
level of baseline flexibility (4.1 ED per ppm) shown as a dashed vertical line. Errors values are plotted on a logarithmic scale for clarity. ABfit 
results with baseline flexibility of B, 0.5, C, 4.1, and D, 15.0 ED per ppm
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F I G U R E  9   ABfit analysis results for simulated data with a broad baseline distortion at 1.3 ppm and metabolite FWHM of 0.1 ppm. A, 
metabolite estimate error of ABfit, with the automatically determined level of baseline flexibility (4.1 ED per ppm) shown as a dashed vertical line. 
Errors values are plotted on a logarithmic scale for clarity. ABfit results with baseline flexibility of B, 0.5, C, 4.1, and D, 15.0 ED per ppm

F I G U R E  1 0   ABfit result plots for a row of 2D MRSI voxels with variable levels of baseline distortion originating from scalp lipid 
contamination. The automatically determined level of baseline flexibility is listed on each plot
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the tNAA resonance. The mean SNR was 85, with the noise 
region defined as the real valued data points between −0.5 
and −2.5 ppm.

Two example fits from one of the voxels in the second 
MRSI data set are shown Supporting Information Figure S8. 
In part A, the ABfit method is applied as described previ-
ously, and in part B the lineshape asymmetry parameter  
(ag) is heavily constrained to enforce a symmetric lineshape 
model. A smaller fit residual in the tNAA spectral region 
is found for the asymmetric lineshape model, justifying the 
minor increase in modeling complexity associated with an 
additional fit parameter.

5  |   DISCUSSION AND 
CONCLUSIONS

A new algorithm to automatically determine the optimal 
level of baseline flexibility has been developed and validated 
using simulated and acquired MRS data. LCModel is cur-
rently the most widely used approach for automatically es-
timating the optimal baseline flexibility, where the optimal 
penalty parameter (�B) is chosen by gradually increasing its 
value until the boundary of the 50% confidence region for the 
fit is achieved—estimated by comparing successive fits to 
the first in the series.8,39 In contrast to LCModel, the method 
presented here uses a modification to the AIC to determine 
the optimal penalty factor—as part of a 4-step fitting proce-
dure. An additional difference is the use of P-splines in ABfit 
compared to smoothing spline approach40 used in LCModel.

Sima and Van Huffel proposed the use of the classical 
generalized cross-validation (GCV) criterion, combined with 
a golden-section search, to determine the optimal penalty 
parameter value.41 High accuracy was demonstrated for sim-
ulated data; however, the method was only tested with good 
starting values for the non-linear fitting parameters, which are 
not typically available for experimentally acquired MRS. In 
ABfit, these nonlinear parameters are estimated using a simpli-
fied initial fit (step 2) and subsequently refined (step 4). More 
recently, Zhang and Shen showed that a measure of the base-
line uncertainty is also a useful criterion to determine baseline 
smoothness for simulated and experimentally acquired data.42

ABfit was shown to find a reasonable compromise be-
tween bias and variance for the majority of simulation tests. 
However, in the fourth simulation test, where a set of inde-
pendent approximate macromolecular signals were used to fit 
a realistic macromolecular model, the optimal flexibility was 
less easily determined. In this case, the AIC penalty for an 
overly rigid baseline was minor, since a low residual could still 
be achieved through the increased freedom afforded by using 
a set of independent macromolecular signals (Figure 7, part 
B). However, in this case, a more rigid baseline introduces a 
greater level of metabolite estimation bias due to the mismatch 

between the simulated and modeled macromolecular profiles. 
This represents a significant challenge for automated baseline 
selection for data with lower SNR—a problem previously 
identified by Near et al19 using the LCModel package.

Potential solutions to reduce metabolite estimation bias 
associated with low SNR include the use of more accurate 
macromolecular modeling30 and opting to use a fixed level 
of baseline flexibility. Whist the default approach for ABfit 
is to automatically select the level of baseline flexibility, 
fitting options are implemented to specify a fixed degree. 
Alternatively, baseline flexibility may be systematically ad-
justed by changing the mAIC scaling parameter m, and this 
may be necessary for data with significantly different baseline 
characteristics such as 31P MRS. Each of these approaches 
has advantages and weaknesses and should be justified de-
pending on the study aims. For example, in functional-MRS, 
a small change in metabolite levels is generally sought, and 
therefore a less flexible baseline may be preferred—since any 
metabolite estimation bias is eliminated when the change is 
normalized to a well determined signal. As a general rule, 
the baseline should be sufficiently flexible to eliminate any 
broad features present in the residual. However, poor spec-
tral SNR will mask these features, and therefore caution is 
advised when comparing metabolite levels between spectra 
with greatly differing SNR—particularly when macromolec-
ular signals are only partially modeled by the basis set.

In conclusion, new MRS analysis method with adaptive 
baseline modeling is presented and validated on simulated 
and experimentally acquired data. The approach is fully- 
automated and integrated into a free and open-source soft-
ware package—providing a transparent and reproducible 
platform for future MRS studies.43
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SUPPORTING INFORMATION
Additional Supporting Information may be found online in 
the Supporting Information section.

FIGURE S1 Example ABfit analysis result for simulated 
data with a broad baseline distortion at 1.3 ppm. Fitting was 
performed on data comprised of known metabolite, baseline, 
macromolecular, and noise components (part A “true” + 
“noise”). Parts B, C, and D compare the true and estimated 
signals separately for the metabolite, baseline and macromo-
lecular components, respectively. The simulated noise-free 
signal (“true”) is shown in each subplot for comparison with 
the estimate from ABfit (“est. ”). The difference between the 
true and estimated (“true” − “est. ”) signals are also shown 
(“resid”). Horizontal dashed lines represent an intensity of 
zero for each of the 4 traces
FIGURE S2 Example ABfit analysis result for simulated data 
without baseline distortion. Fitting was performed on data 
comprised of known metabolite, baseline, macromolecular, 
and noise components (part A “true” + “noise”). Parts B, C, 
and D compare the true and estimated signals separately for 
the metabolite, baseline, and macromolecular components, re-
spectively. The simulated noise-free signal (“true”) is shown 
in each subplot for comparison with the estimate from ABfit 
(“est.”). The difference between the true and estimated (“true” 
− “est. ”) signals are also shown (“resid”). Horizontal dashed 
lines represent an intensity of zero for each of the 4 traces
FIGURE S3 Example ABfit analysis result for simu-
lated data with a broad baseline distortion at 1.3 ppm with 
twice the amplitude compared to Figure 4 and Supporting 
Information S1. Fitting was performed on data comprised of 
known metabolite, baseline, macromolecular, and noise com-
ponents (part A “true” + “noise”). Parts B, C, and D compare 
the true and estimated signals separately for the metabolite, 
baseline, and macromolecular components, respectively. The 
simulated noise-free signal (“true”) is shown in each subplot 
for comparison with the estimate from ABfit (“est. ”). The 
difference between the true and estimated (“true” − “est. ”) 
signals are also shown (“resid”). Horizontal dashed lines rep-
resent an intensity of zero for each of the 4 traces
FIGURE S4 Example ABfit analysis result for simulated 
data without baseline distortion, but with the true macromo-
lecular basis signal replaced with individually simulated lipid 
and macromolecular signals. Fitting was performed on data 
comprised of known metabolite, baseline, macromolecular, 
and noise components (part A “true” + “noise”). Parts B, C, 
and D compare the true and estimated signals separately for 
the metabolite, baseline and macromolecular components, 
respectively. The simulated noise-free signal (“true”) is 
shown in each subplot for comparison with the estimate from 
ABfit (“est. ”). The difference between the true and estimated 
(“true” − “est. ”) signals are also shown (“resid”). Horizontal 

dashed lines represent an intensity of zero for each of the 4 
traces
FIGURE S5 Example ABfit analysis result for simulated data 
with a broad baseline distortion at 1.3 ppm and the true mac-
romolecular basis signal replaced with individually simulated 
lipid and macromolecular signals. Fitting was performed on 
data comprised of known metabolite, baseline, macromolec-
ular, and noise components (part A “true” + “noise”). Parts 
B, C, and D compare the true and estimated signals separately 
for the metabolite, baseline, and macromolecular components, 
respectively. The simulated noise-free signal (“true”) is shown 
in each subplot for comparison with the estimate from ABfit 
(“est. ”). The difference between the true and estimated (“true” 
− “est. ”) signals are also shown (“resid”). Horizontal dashed 
lines represent an intensity of zero for each of the 4 traces
FIGURE S6 Example ABfit analysis result for simulated data 
with a broad baseline distortion at 1.3 ppm and metabolite 
FWHM of 0.1 ppm. Fitting was performed on data comprised 
of known metabolite, baseline, macromolecular, and noise 
components (part A “true” + “noise”). Parts B, C, and D com-
pare the true and estimated signals separately for the metabo-
lite, baseline, and macromolecular components, respectively. 
The simulated noise-free signal (“true”) is shown in each sub-
plot for comparison with the estimate from ABfit (“est. ”). 
The difference between the true and estimated (“true” − “est. 
”) signals are also shown (“resid”). Horizontal dashed lines 
represent an intensity of zero for each of the 4 traces
FIGURE S7 ABfit results from a 2D MRSI semi-LASER 
acquisition. A, Orthogonal T1 MRI slices intersecting the 
analysis region—shown as a colored tNAA/tCr metabolite 
map overlay. Linear regression of key metabolite ratios with 
the gray matter fraction are shown in parts B, C, and D. The 
line of best fit is plotted in blue with the 95% confidence 
region in gray
FIGURE S8 ABfit result plot for a voxel within a 2D MRSI 
semi-LASER acquisition with an asymmetric lineshape. A, 
default analysis with an asymmetric lineshape fit model, B, 
analysis with the lineshape asymmetry parameter (ag) re-
stricted to ±0.0001
TABLE S1 Metabolite concentrations consistent with levels 
measured in normal brain tissue
TABLE S2 Parameters used to generate the individual sim-
ulated lipid and macromolecule basis signals. Listed compo-
nents with the same name were summed to form a composite 
signal
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