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Abstract — This paper proposes a new modular design method for 

hybrid powertrains using a modified accelerated particle swarm 

optimization (MAPSO) algorithm. The method determines the 

optimal combination of component specifications and control 

parameters, where the component specifications include integer 

variables (e.g. the number of battery modules). A unified chaotic 

attraction strategy for MAPSO is developed based on a logistic 

map to improve the probability of achieving the global optimal 

result. Pareto analysis is carried out to identify the weighting value 

for the trade-off in modular design. The Comprehensive 

Reputation Score (CRS), considering both Monte Carlo results 

and the probability of achieving global optima, is employed to 

evaluate the advantageous of the MAPSO compared to 

conventional PSO and four other PSO variants. The MAPSO is 

verified as the best because it has the highest CRS. Both two-level 

and simultaneous methods for modular design are developed with 

the MAPSO, where the former firstly operates component sizing 

at the level-1 and then conducts control optimization at the level-

2, the later optimizes the size and control simultaneously. 

Compared to the two-level method, the simultaneous method 

achieves 7% higher cost function value and saves 50% time.  

Index Terms— Modular design; Hybrid vehicle; Particle swarm 

optimization; Chaotic attraction; Integer variables 

I. INTRODUCTION 

Growing concerns for air quality and the advent of zero-

emission zones have motivated the automotive industry to seek 

low-cost carbon emission reduction solutions [1], [2]. The 

hybridization of vehicles offers a promising solution to energy 

saving and emissions reduction. Thermal propulsion systems 

will experience a transition from being the ‘solo’ propulsion 

device to being part of a ‘hybrid’ system [3]–[5].  

Powertrain optimization is critical for the success of hybrid 

vehicles [6]. Both online and offline optimization methods are 

being developed to minimize fuel consumption, emissions and 

cost [7], [8]. Model-based predictive control [9], [10], 

equivalent consumption minimization strategy [11], [12], and 

reinforcement learning [13]–[15] have been applied to online 

optimize energy flows of the vehicle. On the other hand, offline 

optimization is essential to guarantee the optimal settings of 

component size and control parameters [16], [17]. It is because 

changing some key parameters (e.g. engine displacement) is 

almost impossible once they have been fixed for production.  

Modular design allows fast and low-cost development of new 

vehicular products [18]. Volkswagen develops a modular 

platform for the flexible development of its new electric and 

hybrid powertrains [19]. CHANGAN motor unveiled its brandy 

new ‘Blue Core’ high-efficiency internal combustion engine 

(ICE) series for hybrid vehicles on a modular platform [20]. 

Modular design is also widely accepted for the development of 

off-highway vehicles [21]. Conventionally, the modular design 

relies on the engineers’ experience, while the design results are 

determined by the design of experiments (DoE) [22]. Artificial 

intelligence has been deployed for hybrid vehicles for global 

optimization [23], and this motivates the research into 

intelligent modular design. Intelligent modular design of hybrid 

powertrain is an offline optimization problem on the system 

level, and there are two typical methods [24], i.e. two-level and 

simultaneous optimizations.  

Two-level optimizations consider component sizing and 

control optimization as two separated tasks. For component 

sizing, Pourabdollah et al. optimized a hybrid vehicle based on 

varying levels of modelling details using Convex Optimization 

(CO) [25]. The optimal component size of a hybrid system 

considering the cost and battery life has been developed using 

the Nondominated Sorting Genetic Algorithm (NSGA-II) [26]. 

Shahverdi et al. obtained the Pareto frontier of component cost 

and fuel economy with a genetic algorithm [27]. Xu et al. used 

the exhaustive search method to optimize the topology of 

hybrid vehicles considering different powertrain layouts [28]. 

For control parameters, Wang et al. optimized the control 

parameters for energy management to minimize the daily cost 

using dynamic programming (DP) [29]. Lv et al. implemented 

a neural network driver model for control parameter calibration 

to allow personalized vehicle economy optimization [30].  

Simultaneous optimization deals with the component sizing 

and control parameter optimization as an integrity. Lv et al. 

found the optimal combination of component size and control 

parameters considering the vehicle dynamic performance, ride 

comfort and energy efficiency [31]. Leahey et al. optimized the 

component size and control parameters of a hybrid vehicle 

using a scripted algorithm [32]. Mamun et al. determined the 

optimal component specification and control parameters of a 

vehicle using the particle swarm optimization (PSO) [33].  

Two-level and simultaneous optimizations have been 

investigated in many different hybrid vehicle studies, but there 

is no evidence showing that there exists a universal 

optimization method for all scenarios [24]. On the other hand, 

most of the literature assumes that the design variables are 

continuously varying [34], [35]. The modular design must 

consider the design variables which are from discontinuously 

varying domains (e.g. integers). This motivates the 

development of modular design method based on the meta-

heuristic algorithm as it does not require derivation information.  

The authors have carried out a series of research on 

optimization methods for vehicle powertrains with meta-

heuristic algorithms, including NSGA [36], SPEA [37], [38], 

and PSO [39], [40]. We chose the PSO variant for the intelligent 

modular design for the following two reasons: 1) PSO has fewer 

tuning parameters (compared to NSGA, SPEA); 2) PSO 
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requires low computational effort (compared to DP) [41] and is 

flexible for either two-level or simultaneous optimization. The 

Accelerated Particle Swarm Optimization (APSO) further 

reduces the number of attraction factors from 2 to 1 and has 

shown advantageous in global searching compared with 

conventional PSO [42]. Conventional APSO updates the 

position of its particles with the assumption that the design 

parameter candidates are continuously varying within their 

lower and upper boundaries [43]. This paper further develops a 

particle position updating strategy to enable optimal searching 

with mixed-integer variables for modular design.  

Chaotic maps have shown the capability of tuning PSO 

parameters adaptively during the optimization process so that 

they can improve the convergence speed and the consistency of 

the optimization results in different trials [44]. Li et al. 

introduced a logistic map to tune the algorithm for gasoline 

engine optimization [45]. Yu et al implemented a variant of the 

logistic map (tent map) to tune the PSO parameters for air 

bearing optimization [46]. Logistic map [47], Gauss map [48], 

Singer map [49], and Sinusoidal map [50] have been widely 

studied for parameter tuning in PSO algorithms that deal with 

continuous-varying variables. However, a unified chaotic 

attraction strategy for modular design, which deals with mixed-

integer variables, has not been reported yet. 

To achieve the robustly optimal solution retrieving for 

module design of hybrid powertrains, this paper proposes a 

Modified Accelerated Particle Swarm Optimization (MAPSO) 

algorithm. This work aims to deliver two new main 

contributions: 1) The capability of optima searching in discrete-

varying domains using the newly proposed MAPSO will be 

verified, which will resolve the modular design problem with 

mixed-integer variables; 2) A unified chaotic attraction strategy 

will be developed based on the logistic map, which tunes the 

attraction factor of the MAPSO adaptively during the 

optimization process in modular design. The advantageous of 

the proposed MAPSO will be evaluated compared with the 

conventional PSO and the APSOs with three commonly used 

chaotic maps. The evaluation will consider both Monte Carlo 

results and the probability of achieving global optima. The 

vehicle performance using the proposed algorithm for both two-

level and simultaneous optimizations are demonstrated in both 

software-in-the-loop and hardware-in-the-loop tests. 

The rest of the paper is organized as follows: Section II 

provides information about the off-highway vehicle system and 

the scalable powertrain modules. The optimization problem is 

formulated in Section III. The accelerated particle swarm 

optimization algorithm is modified for modular design in 

Section IV. Experiment platforms are introduced in Section V. 

The results of experiments are also presented and discussed in 

Section V. Conclusions are summarized in Section VI. 

II. THE VEHICLE AND SCALABLE POWERTRAIN MODULES 

A. The Vehicle System 

This paper demonstrates the intelligent modular design of a 

hybrid aircraft-towing tractor, as in Fig. 1. The tractor has a 

series hybrid powertrain using a 245kW traction motor, which 

is powered by a battery pack, and an engine-generator that 

provides extra power for vehicle operation and battery 

charging. The energy management controller determines the 

amount of power contributed by the engine-generator and the 

battery package to satisfy the power demand and maintain the 

battery state of charge (SoC). Parameters of the vehicle are 

listed in Table I and the vehicle is modelled in Appendix I.  

 
Fig. 1.  The hybrid aircraft-towing tractor system 

Table I. VEHICLE PARAMETERS 

Parameter Description Value 

𝑚veh Vehicle mass 16t 

𝑟whl Radius of the wheels 0.75m 

𝑓𝑓 Friction coefficient 0.02 

𝐶𝑑 Aerodynamic drag coefficient 0.8 

𝐴𝑓 Effective front area 6.8m2 

B. Scalable Powertrain Modules 

Scalable modules, including an engine-generator module, a 

battery module, and an energy management module, will be 

optimized in this paper to allow a hybrid powertrain achieving 

its maximum energy efficiency with the minimum geometric 

size. The engine-generator module and battery module are 

modelled based on the datasheets provided by the suppliers [51] 

[38]. The energy management module is developed using a 

widely used power-distribution function. 

1) Engine-generator module 

The engine-generator module consists of an ICE, a generator, 

and a fuel tank. The engine model is based on Williams’ 

approximation [26] and assumes a constant bore-to-stroke ratio. 

The equivalent power of the fuel consumption is scaled by the 

displacement of the engine 𝐿𝑖𝑐𝑒 

𝑃fuel(𝑡, 𝐿ice) =
𝐿ice

𝐿ref
∙ 𝐻𝑓 ∙ 𝑚𝑓̇ (𝑢egu(𝑡))  (1) 

where 𝐿ice is the displacement of the candidate engine in litres; 

𝐿ref is the displacement of the baseline engine in litres. In this 

work, a 4.4L diesel engine is selected as the baseline. Here 𝑚𝑓̇  

is represented by the fuel consumption map, which is based on 

the engine generator control command 𝑢𝑒𝑔𝑢(𝑡), and 𝐻𝑓 is the 

heat value for the diesel fuel, which is 44 × 106J/kg. 

The dimensional size of the engine generator 𝑣𝑜𝑙𝑒𝑔𝑢  is 

scaled using a logistic function of the engine displacement 𝐿ice 

𝑣𝑜𝑙egu(𝐿ice) =
1

𝑐e1+𝑒
−(𝑐e2∙𝐿ice+𝑐e3)

  (2) 

where 𝑐e1 = 9.5e − 5, 𝑐e2 = 0.9006, and 𝑐e3 = 5.685 are the 

model parameters, which are calibrated using the MATLAB 

curve fitting toolbox based on a dataset from the supplier [51].  
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2) Battery module 

Each battery module is assembled by arranging 100 

Panasonic 18650 battery cells in series to achieve a nominal 

voltage of 370V. A 2-RC battery model is developed and 

calibrated with the data from [52]. The battery pack is scaled by 

the total number of the battery module in parallel, 𝑛bm. The 

power loss of the battery is 

𝑃batt_loss = 𝑛bm ∙ 𝑅eqv(t) ∙ 𝐼
2
batt(𝑡)  (3) 

where 𝑅eqv is the battery internal resistance derived from the 

battery’s SoC. In practice, the battery SoC is observed by the 

battery voltage 𝑈batt(𝑡), and the current 𝐼batt(𝑡). Therefore, in 

this paper, the battery internal resistance is mapped by the 

battery voltage and current, i.e. 𝑅eqv(𝑈batt(𝑡), 𝐼batt(𝑡)). 

The dimensional volume of the battery package 𝑣𝑜𝑙bp is 

scaled by the number of Lithium-ion battery cells 𝑛bc as 

𝑣𝑜𝑙bp(𝑛bm) = 𝑛bm ∙ 100 ∙ 4 ∙ 𝑟cell
2 ∙ ℎcell   (4) 

where 𝑟cell  is the radius of the battery cell; and ℎcell  is the 

height of the battery cell. In this work, 𝑟cell and ℎcell are set as 

6.5× 10−3m and 65.3× 10−3m, respectively [52]. 

3) Energy management module 

The power supplied by the engine generator and battery is 

calculated in real-time by 

𝑃egu = 𝑢egu(𝑆𝑜𝐶) ∙ 𝑃egu_max
𝑃batt = 𝑃dem − 𝑃egu

} (5) 

where 𝑃batt is the power supplied by the battery pack and 𝑃egu 

is the power supplied by the engine generator; 𝑃egu_max is the 

maximum power that can be provided by the engine-generator; 

and 𝑃dem is the vehicle’s power demand. 

Energy management strategies, including exponential 

functions [7], model-based predictive control [9], [10], and 

model-free control [13], [14], build a nonlinear relationship 

between the power distribution and the vehicle states (e.g. 

battery SoC). This paper provides a paradigm based on the 

exponential function because it is robust and provides nonlinear 

constraints like the other strategies. The engine generator is 

therefore controlled by [23] 

𝑢egu(𝑆𝑜𝐶) = {

               0               𝑆𝑜𝐶𝜖[0.8 1]   

𝑒
(−

(𝑆𝑜𝐶−𝑆𝑜𝐶−)2

2∙𝑐ems2
)
  𝑆𝑜𝐶𝜖[0.2 0.8)

             1              𝑆𝑜𝐶𝜖[0 0.2)

 (6) 

where 𝑐ems is the control parameter to be optimized for power 

distribution control; 𝑆𝑜𝐶 is the state of charge of the battery; 

and 𝑆𝑜𝐶−  is the lower battery SoC boundary. Normally 

𝑆𝑜𝐶− = 0.2 is chosen to ensure the battery health.  

III. THE OPTIMIZATION PROBLEM 

The modular design aims to find the optimal combination of 

components size and energy management parameters. The 

mathematic model of the modular design is 

[𝐿ice
∗ 𝑛bm

∗ 𝑐ems
∗ ] = argmin(𝐽loss 𝐽size)

 s. t. {

𝐿ice ∈ 𝓛
𝑛bm ∈ 𝓝
𝑐ems ∈ 𝓒

}  (7) 

where 𝐿ice
∗  is the optimal engine size; 𝑛bc

∗  is the optimal size of 

the battery package; 𝑐ems
∗  is the optimal coefficient value for the 

power distribution function; 𝓛, 𝓝, and 𝓒 are the value domain 

of 𝐿ice , 𝑛bm , and 𝑐ems , where 𝓛 = {2.0,2.1,2.2, … ,6.0}, 𝓝 =
{55, 56, 57, … ,150}, and 𝓒 = {𝑐ems|0.05 ≤ 𝑐ems ≤ 0.2}.  

The first optimization objective 𝐽loss is to minimise the total 

energy loss over a driving cycle, which can be calculated using 

the equivalent energy of both fuel consumption and the energy 

loss in the internal resistance of battery 

𝐽loss = ∫ 𝑃fuel(𝑡) ∙ 𝑑𝑡
𝑡𝑝
𝑡0

+ ∫ 𝑃batt_loss(𝑡) ∙ 𝑑𝑡
𝑡𝑝
𝑡0

 (8) 

where 𝑃fule and 𝑃batt_loss are calculated by Eq. (1) and (3). 

The dimensional volume of components is considered in the 

second optimization objective, which is given by 

𝐽size = 𝑣𝑜𝑙egu(𝐿ice) ∙ 10
−3 + 𝑣𝑜𝑙bp   (9) 

where 𝑣𝑜𝑙egu  is the total volume of engine-generator that is 

calculated by Eq. (2); the volume of engine-generator is 

multiplied by 10−3 to convert the unit from L to m3; 𝑣𝑜𝑙bp is 

the volume of battery pack calculated by Eq. (4). 

IV. MODIFIED ACCELERATED PARTICLE SWARM 

OPTIMIZATION ALGORITHM FOR MODULAR DESIGN 

This section introduces the idea of the modified accelerated 

particle swarm optimization (MAPSO) algorithm for modular 

design of hybrid powertrain for both simultaneous and two-

level methods, where the new particle position updating 

strategy and chaotic attraction strategy are newly developed. 

A. General Idea 

The general idea of the module design with MAPSO 

algorithm is using the particle swarm intelligence to retrieve the 

best position (defined in a Euclidean coordinator compromising 

the variables needed to be optimized) that achieve the lowest 

cost in a nonlinear space (defined by the optimization 

objectives). The simultaneous method optimizes the design 

parameters and control parameters simultaneously as shown in 

Fig. 2. a). The two-level method optimizes the design 

parameters based on a guess control parameter on the first level 

and uses the optimized design parameters to find the optimal 

control parameters on the second level. The optimization results 

from the two-stage method will be found after several rounds 

of iteration with different initial guesses of control parameters. 

The positions of particles (i.e. computing agents) are defined 

as following using a Euclidean coordinator 

𝒙𝑖,𝑗 = [𝐿ice , 𝑛bm ]
𝑇 lv. 1

𝒙𝑖,𝑗 = [𝑐ems]𝑇 lv. 2
} two level

𝒙𝑖,𝑗 = [𝐿ice , 𝑛bm , 𝑐ems]
𝑇 simultaneously

𝑖 = 0,1,2, … , 𝑛;  𝑗 = 1,2, . . , 𝑝 }
 
 

 
 

 (10) 

where 𝒙𝑖,𝑗 is the ‘position’ of the 𝑗𝑡ℎ ‘particle’ at 𝑖𝑡ℎ iteration; 

𝑛  is the maximum number of iterations, which is used to 

terminate the iterations; and 𝑝 is the population of the particles, 

which defines the capability of global search in each iteration.  

The objective function values are the total power loss 𝑱loss 
and the total volume of the powertrain components 𝑱size, which 

is obtained by 𝑝  cases of parallel simulations. A matrix of 
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particle positions [𝒙𝑖,1, 𝒙𝑖,2, … , 𝒙𝑖,𝑝] is the inputs of the parallel 

simulation. The simulation is based on the driving cycles that 

are defined with data from the London Heathrow Airport [17]. 

 

Fig. 2.  Flow chart of the modular design with MAPSO: a) 

simultaneous method; b) two-level method   

B. Particle Positions Update with a Floor Function 

Conventional Accelerated Particle Swarm Optimization 

(APSO) algorithm updates the particle positions by 

𝒙𝑖+1,𝑗 = 𝒙𝑖,𝑗 + 𝛽 ∙ (𝒙𝑖,∗ − 𝒙𝑖,𝑗) + 𝛼
𝑖+1 ∙ 𝒓𝑖,𝑗  (11) 

where 𝒓𝑖,𝑗  is a vector of unique random numbers for each 

particle in each iteration; 𝛼𝑖+1 is a shrinking factor in reducing 

the influence of random moves; 𝛽 is the attraction factor which 

controls how global best position will attract the movement of 

each particle. For standard APSO algorithm, the value of the 

attraction factor is fixed, and 𝛽 = 0.5 is used [53]. 𝒙𝑖,∗ is the 

best position in 𝑖𝑡ℎ iteration, which is a column of the matrix 

[𝒙𝑖,1, 𝒙𝑖,2, … , 𝒙𝑖,𝑝] that satisfies 

𝐽(𝒙𝑖,∗) ≤ 𝐽(𝒙𝑖,𝑗)  (12) 

where 𝑖 = 1,2, … , 𝑛;  𝑗 = 1,2, . . , 𝑝. 𝐽(𝒙𝑖,𝑗) is the cost function 

evaluated for each 𝒙𝑖,𝑗  value, which is calculated with a 

weighted-sum cost function to integrate the two objectives 

𝐽(𝒙𝑖,𝑗) = (𝑤 ∙
𝐽loss(𝒙𝑖,𝑗)

𝐽loss
∗ + (1 − 𝑤) ∙

𝐽size(𝒙𝑖,𝑗)

𝐽size
∗ ) (13) 

where 𝒙𝑖+1,𝑗  and 𝒙𝑖,𝑗  are the position of the 𝑗𝑡ℎ  particles at 

𝑖 + 1𝑡ℎ  and 𝑖𝑡ℎ  iteration respectively; 𝑤  is the weighting 

factor; and 𝐽loss
∗  and 𝐽size

∗  are scale factors to ensure the values 

of the scaled objective functions are both within 0 and 1; 𝐽loss
∗  

is the energy loss determined by using a 6.0L engine-generator 

to track the tractor’s power demand under the combined driving 

cycle; 𝐽size
∗  is the total size of a 6.0L engine-generator and a 

battery pack with 150 modules that is calculated by Eq. (9). 

To deal with the discontinuous variables for component 

sizing, i.e. for engine-generator 𝓛 = {2.0,2.1,2.2, … ,6.0}  and 

for battery 𝓝 = {55, 56, 57, … ,150}, the proposed Modified 

Accelerated Particle Swarm Optimization (MAPSO) algorithm 

modifies Eq. (13) as 

𝒙𝑖+1,𝑗 =
floor [s∙(𝒙𝑖,𝑗+𝛽∙(𝒙𝑖,∗−𝒙𝑖,𝑗)+𝛼

𝑖+1∙𝒓𝑖,𝑗)]

𝑠
   (14) 

where floor(x) is a function that rounds the elements of x to the 

nearest integers less than or equal to x; 𝑠 is a scaling factor to 

generate new position with a resolution; 𝑠=1 is for battery 

module and 𝑠=10 is for engine-generator module because the 

displacement of the engine is varying with a resolution of 0.1. 

C. Chaotic Attraction with Logistic Map 

The general idea of chaotic attraction is to develop an 

iteration-variant attraction factor 𝛽(𝑖), which generates a set of 

𝛽 ∈ [0,1] for each iteration, { 𝛽(1), 𝛽(2), … , 𝛽(𝑛)}, to upgrade 

the attraction factor in 𝛽 Eq. (13) and Eq. (14). Logistic map, 

which follows a principle of biological evidencing behavior, is 

proposed as a unified chaotic attraction strategy in this paper 

because it has only one tuning parameter and is easy to be 

implemented in engineering applications [47]. The logistic map 

dynamically updates the attraction factor in each iteration as 

𝛽(𝑖) = 𝜇 ∙ 𝛽(𝑖 − 1) ∙ (1 − 𝛽(𝑖 − 1))   (15) 

where 𝜇 is constant. According to the bifurcation diagram in 

Fig. 3. a), which illustrates the value of { 𝛽(2), 𝛽(3), … , 𝛽(𝑛)}) 
with different settings of 𝜇, 𝜇 = 4 is chosen because it covers 

most values between 0 and 1. The 𝛽 values in 50 iterations are 

shown in Fig. 3. b). The average 𝛽 values (calculated with a 

moving window compromise 15 samples) are smaller than 0.5 

in the first 25 interactions (to have more search around the local 

area) but are greater than 0.5 after the 25th iteration (to 

accelerate the convergence). This will theoretically prevent 

particles being trapped into local optima in a computationally 

effective way. 

 

Fig. 3.  Chaos behavior of logistic map: a) bifurcation 

diagram; b) dynamics in each iteration 

a) b) 
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V. RESULTS AND DISCUSSION 

The experimental study is carried out on both software-in-

the-loop (offline) and hardware-in-the-loop (online) testing 

platforms. The MAPSO algorithm is initially running offline in 

MATLAB 2017a on a PC configured with an i7 CPU and 16GB 

RAM. Real-world cycles (RWC) 1-3 are defined using the data 

collected at the London Heathrow Airport on a tractor working 

with small, medium, and large airplanes, respectively. The 

combined driving cycle (CDC) is a random combination of 

RWC 1-3, which is used for offline optimization study. The 

driving cycle profile is illustrated in Table II. Both the CDC and 

RWC1-3 are used for the evaluation of the powertrain 

performance on the hardware-in-the-loop platform, as shown in 

Fig. 4. The performance of the powertrain using the optimized 

component parameters is emulated in the ETAS LABCAR, 

controlled by the ES910 with the optimized control parameter. 

 

Fig. 4.  Hardware-in-the-Loop testing facility 

Table II. SUMMARY OF DRIVING CYCLE PROFILES 

Algorithm 
Comb. 

cycle 
RWC-1 RWC-2 RWC-3 

Cycle Length  8504s 4907s 4055s 4151s 

Mean power 

demand  
39.4kW 32.9 kW 35.5 kW 48.1 kW 

A. Pareto Frontier for Selection of Weighting Factor 

An approximated Pareto Frontier (aPF) for modular design 

under the combined driving cycle, as illustrated in Fig. 5, is 

obtained by calculating the nondominated set from the results 

obtained by the MASPO and the NSGA-II (a benchmark Pareto 

method) algorithms.  

 
Fig. 5.  Approximated Pareto Frontiers in modular design 

The effectiveness of the estimated PF (ePF) obtained by the 

MAPSO (with different weighting factors) is validated by 

comparing it with the aPF and the ePF obtained by the NSGA-

II algorithms with two different settings. A trade-off analysis 

based on the ePF will be conducted to guide the selection of the 

weighting factor of two optimization objectives in MAPSO. 

The ePF obtained by the NSGA-II (50*200) algorithm, 

which has a population size (pop-size) of 50 running for 200 

iterations, is shown in the red ‘+’ sign. The ePT obtained by the 

MAPSO, which has a pop-size of 35 running for 50 iterations, 

is shown in purple circles. It illustrates the dominated optimum 

values of both objective functions (i.e. 𝐽𝑙𝑜𝑠𝑠 and 𝐽𝑠𝑖𝑧𝑒) with the 

weighting factor changing from 0 to 1 with a step size of 0.25. 

The weighting factor of 1 means the optimization only 

considers the energy loss while 0 means only the minimization 

of component size is considered. The ePF obtained by the 

NSGA-II (35*50), which has the same number of vehicle model 

iterations as the MAPSO, is shown in yellow ‘x’ sign. Error 

ratio, ER, and generational distance, GD, are used to evaluate 

the ePF obtained by the MAPSO and NSGA-II algorithms, 

which are defined by [54] 

ER =
∑ 𝑒(𝑦𝑚)
𝑁
𝑚=1

𝑁

GD =
√∑ 𝑦𝑚∙dis

2(𝑦𝑚,𝑺aPT)
𝑁
𝑚=1

𝑁

}  (16) 

where 𝑁  is the member of elements in the ePF; 𝑦𝑚  is the 

individual value in the ePF sets; 𝑺aPF  is a set that forms the 

approximated Pareto Frontier (aPF); 𝑒(𝑦𝑚)=1 if 𝑦𝑚 ∈ 𝑺aPF 

otherwise 𝑒(𝑦𝑚) =0; dis(𝑦𝑚, 𝑺aPF)  is the shortest distance 

between the element 𝑦𝑚  and the aPF. The error ratio and 

generational distance of the MAPSO are compared with the 

NSGA-II methods in Table III. 

Table III. ERROR RATIO AND GENERATIONAL DISTANCE  

Algorithm 
MAPSO 

(35*50) 

NSGA-II 

(35*50) 

NSGA-II 

(50*200) 

ER 0.80 0.68 0.94 

GD 3.48× 105 3.89× 106 9.11× 104 

The ePF obtained by the MAPSO achieves higher ER and 

lower GD than the one obtained by the NSGA-II with the same 

number of vehicle model iterations. Although the ePF obtained 

by the NSGA-II (50*200) is better than MAPSO, it needs 10k 

vehicle model iterations that require more than 5 times of 

computational effort. In a consequence, the ePF obtained by the 

MAPSO is shown effective. Based on the ePF obtained by 

MAPSO, the energy loss can be reduced by 5% through 

increasing components size by 4% when the weight value 

changes from 0 to 0.25; and a 42% increase in component size 

can achieve a 56% energy loss reduction when the weight value 

changes from 0 to 1. The weighting value of 0.75 is chosen for 

the rest of the investigation because it saves 46% energy via the 

sacrifice of 30% increasing in powertrain size which has the 

highest energy-saving/volume-increasing ratio.  

B. Comprehensive Reputation Evaluation 

By running each of the modular optimization cases under the 

combined driving cycle using conventional PSO, conventional 

APSO, the proposed MAPSO, and the APSO with three other 
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CAS (i.e. Gauss map [48], Singer map [49], and Sinusoidal map 

[50]) for 20 times independently, statistical results of the cost-

function values were obtained and are listed in 0.  

Table IV. STATISTIC RESULTS OF 20 INDIVIDUAL OPTIMIZATION TESTS 

Algorithm 𝐽∗ 
Monte Carlo 

𝑃(𝐽 = 𝐽∗) 𝑗 ̅ σ 

Con. PSO 0.7375 0.7423 2.05e-6 0.20 

Con. APSO 0.7375 0.7405 2.18e-6 0.15 

APSO+ Gauss 0.7375 0.7393 2.62e-6 0.35 

APSO+ Singer 0.7375 0.7394 2.01e-6 0.25 

APSO+ Sin 0.7375 0.7394 3.73e-6 0.20 

MAPSO 0.7375 0.7338 2.04e-6 0.45 

All the algorithms can retrieve the same best cost-function 

value (0.7375), which can be regarded as the global optima. 

This is achieved by a powertrain using a 2.1L engine-generator, 

a battery pack with 82 modules and power distribution function 

coefficient of 0.18. It shows that the modified PSO algorithm 

can obtain the optimization results with mixed-integer variables. 

The mean values and standard deviations of the cost-function 

values obtained by the MAPSO and APSOs with CAS are 

smaller than the conventional PSO and APSO. MAPSO 

achieves the minimum mean value (0.7338). APSO with Singer 

strategy attains the lowest standard deviation value (2.01e-6) 

followed by the MAPSO (2.04e-6). The probability of 

achieving the global best by the MAPSO is 0.45, which is more 

than twice higher than the conventional PSO (𝑃(𝐽 = 𝐽∗)=0.2). 

The comprehensive reputation scoring system is established 

based on the ranking of each algorithm in terms of its Monte 

Carlo results (i.e. mean cost function value 𝑗 ̅and its standard 

derivation σ) and the probability of achieving global optima 

𝑃(𝐽 = 𝐽∗). The higher the ranking the algorithm has, the higher 

comprehensive reputation score (CRS) it will gain, e.g., for 

each evaluation index, the algorithm with the 1st ranking scores 

6, and the 6th ranking algorithm scores 1. The scoring of the six 

optimization methods is shown in Fig. 6. , and the proposed 

MAPSO is considered as the best for modular design, gaining a 

CRS of 17 which is more than twice higher than the 

conventional PSO (CRS=8).  

 

Fig. 6.  Scoring of the optimization methods 

C. Powertrain Performance with the Optimal Parameters 

The powertrain performance using the design parameters 

obtained by both two-level and simultaneous methods are 

obtained in Fig.7. The experiment is carried out in the combined 

cycle on the hardware-in-the-loop platform. The results 

obtained with the simultaneous method are shown in purple, 

and the results obtained using two-level methods with initial 

control parameter guess of 0.05, 0.10 and 0.20, are shown in 

blue, red, yellow, respectively.  

 

Fig. 7.  Powertrain performance in the combined cycle 

The results indicate that the hybrid powertrain with the 

optimized parameters works appropriately: the engine-

generator can provide enough power to maintain the battery 

SoC. In all the given cases, the battery pack can supply enough 

power, while the voltage and current are within their safe limits. 

The two-level optimization highly depends on the initial guess 

on control parameters, the two-level method with initial 𝐶𝑒𝑚𝑠 =
0.20 achieves the lowest cost-function value of 0.5621, 4.8% 

better than the two-level optimisation with initial 𝐶𝑒𝑚𝑠 = 0.05. 

The simultaneous method does not need an initial guess, while 

it can achieve a cost-function value of 0.5595. In terms of the 

computational efforts, the average time for the simultaneous 

optimization in 20 trials is 365.37s, and it requires 732.27s for 

the two-stage method on the same PC. Only three variables are 

considered for simplification in this work, but the contribution 

on timesaving is expected to grow exponentially while the 

design variables in real practice can be more than hundreds. 

D. Robustness of the Modular Design Results 

To evaluate the robustness of the optimization results, tests 

under four different driving cycles are carried out on the 

hardware-in-the-loop (HiL) platform. The cost-function values 

affecting the performance of the optimization are listed in Table 

V. In general, the simultaneous method can achieve better 

(lower) cost function values compared to the two-stage methods 

with different initial guesses of the control parameter. Under the 

combined cycle (was used for offline optimization), the cost 

function value at the end of the HiL test with the results of the 

simultaneous optimization is 0.5508, which is 5.8% better than 

that obtained by the two-level method ( 𝑐𝑒𝑚𝑠 = 0.05). The 

reductions of 2.4%, 3.17%, and 7.5% in cost function values 

have been achieved by the simultaneous method compared to 

the two-level method (𝑐𝑒𝑚𝑠 =0.05) under RWC1, 2, and 3, 
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respectively. This indicates the simultaneous method has higher 

potential in cost-function value reduction in the driving cycles 

with higher average power demand. We can also conclude that 

the simultaneous method with MAPSO outperforms the two-

level methods robustly in the defined driving cycles. 

Table V. VEHICLE ENERGY CONSUMPTION IN DIFFERENT CYCLES 

Cycle Name Method Cost-fcn value 

Combined cycle 

Two-level (c=0.05) 0.5905 

Two-level (c=0.1) 0.5813 

Two-level (c=0.2) 0.5621 

Simultaneous 0.5595 

Real-world cycle 1 

Two-level (c=0.05) 0.4043 

Two-level (c=0.1) 0.4016 

Two-level (c=0.2) 0.3982 

Simultaneous 0.3944 

Real-world cycle 2 

Two-level (c=0.05) 0.3799 

Two-level (c=0.1) 0.3760 

Two-level (c=0.2) 0.3717 

Simultaneous 0.3682 

Real-world cycle 3 

Two-level (c=0.05) 0.4250 

Two-level (c=0.1) 0.4137 

Two-level (c=0.2) 0.3981 

Simultaneous 0.3953 

VI. CONCLUSIONS 

This paper proposes a modular design method for hybrid 

powertrain with a Modified Accelerated Particle Swarm 

optimization (MAPSO) algorithm. The probability of achieving 

the globally optimal result is improved by the chaotic attraction 

strategy. Experimental studies have been carried out on both 

software-in-the-loop and hardware-in-the-loop platforms. The 

conclusions drawn from the investigation are: 

• Introducing a weighting value (changing from 0 to 1) in the 

MAPSO algorithm allows the designer to investigate the 

sensitivity of the two optimization objectives based on the 

Pareto frontier. Higher reduction rate in energy loss can be 

achieved with less increase of powertrain size when the 

weighting factor is lower than 0.75.  

• Introducing a ‘floor’ function enables the MAPSO 

algorithms with the capability of optima searching in 

discrete-varying domains. The proposed MAPSO 

algorithm has shown robustness in achieving the same best 

result compared with conventional PSO, conventional 

APSO, and the APSOs with three other chaos maps. 

• The MAPSO with logistic chaotic attraction strategy is 

proven as the most effective under the comprehensive 

reputation scoring scheme. It has the highest CRS of 17 

which is at least twice higher than the conventional PSO.  

• MAPSO is compatible with both two-level and 

simultaneous optimization methods. Compared to the two-

level method, the simultaneous method can achieve 7% 

better cost function value with 50% less time-consuming. 

In the future, the proposed modular design method will be 

integrated with digital twin models to globally optimize the 

energy efficiency and safety of connected vehicles. 

APPENDIX I VEHICLE MODEL  

The aircraft-towing tractor is modelled backwards with the 

speed profile of driving cycles to calculate the force demand  

𝐹dem = 𝐹𝑎 + 𝐹𝑑 + 𝐹𝑓    (A1) 

where 𝐹𝑎 = (𝑚veh +𝑚plane) ∙
𝑣𝑑

3.6

̇
, 𝐹𝑑 =

𝐶𝑑∙𝐴𝑓∙𝑣𝑑
2

21.15
, and 𝐹𝑓 =

(𝑚veh +𝑚plane) ∙ 𝑔 ∙ 𝑓𝑓  are acceleration resistance, air drag, 

and friction resistance; 𝑚veh  and 𝑚plane  are the mass of the 

tractor and the airplane in kg; 𝑣𝑑 is the vehicle speed in km/h; 

𝑚plane and 𝑣𝑑 are defined by driving cycles; 𝐶𝑑 and 𝑓𝑓 are the 

drag and rolling resistance coefficient; 𝐴𝑓 is the front area of 

the tractor; and 𝑔  is gravity constant. Because the tractor is 

working on flat grounds, the climbing resistance is ignored. The 

power and energy demand of the powertrain are calculated by 

𝑃dem =
𝐹dem∙𝑣𝑑

𝜂tran∙𝜂m(𝑛𝑚,𝑇𝑚)

𝐸dem = ∫ 𝑃dem(𝑡)
𝑡𝑡
𝑡=𝑡0

𝑑𝑡
}   (A2) 

where 𝜂tran is the efficiency of the transmission which is 0.95 

according to the datasheet from the supplier; 𝜂m  is the 

efficiency of traction motor, which is a two-dimensional map 

of motor speed 𝑛𝑚 and  torque 𝑇𝑚  [17]; and 𝑡0 and 𝑡𝑡 are the 

start time and terminate time in a driving cycle. 

APPENDIX II NOMENCLATURE 

𝑃fuel Equivalent power for 

fuel consumption 

𝑃dem Vehicle’s power 

demand 

𝐿ice Displacement of the 

engine 
𝑐ems Control parameters 

 𝑢𝑒𝑔𝑢 Engine-generator 

control command 

𝓛 A set of candidates 

𝐿icevalues 

𝑣𝑜𝑙egu Dimensional size of 

the engine-generator 

𝓝 A set of candidates 

𝑛bmvalues 

𝑛bm Number of battery 

modules 
𝓒 A set of candidates 

𝑐emsvalues 

𝑅eqv Battery internal 

resistance 
𝑝 Population of the 

particles 

𝐼batt Battery module 

current 

𝑛 The maximum 

iteration number  

𝑈batt Battery module 

voltage 
𝛽 Attraction factor 

𝑟cell Radius of the battery 

cell 

𝜇 Tuning parameter in 

the logistic map 

ℎcell Height of the battery 

cell 
ER Error ratio 

𝑃batt Power supplied by the 

battery pack 
GD Generational 

distance 

𝑃egu Power of the engine-

generator 
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