Characterizing the Atmospheric Mn Cycle and Its Impact on Terrestrial Biogeochemistry

Louis Lu*, Longlei Li, Sagar Rathod, Peter Hess, Carmen Martínez, Nicole Fernandez, Christine Goodale, Janice Thies, Michelle Y. Wong, Maria Grazia Alaimo, Paulo Artaxo, Francisco Barraza, Africa Barreto, David Beddows, Shankarararman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Gaetano Dongarrà, Cassandra GastonDarío Gómez, Yasser Morera‐Gómez, Hannele Hakola, Jenny Hand, Roy Harrison, Philip Hopke, Christoph Hueglin, Yuan‐Wen Kuang, Katriina Kyllönen, Fabrice Lambert, Willy Maenhaut, Randall Martin, Adina Paytan, Joseph Prospero, Yenny González, Sergio Rodriguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal Weagle, Yi‐Hua Xiao, Natalie Mahowald

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

The role of manganese (Mn) in ecosystem carbon (C) biogeochemical cycling is gaining increasing attention. While soil Mn is mainly derived from bedrock, atmospheric deposition could be a major source of Mn to surface soils, with implications for soil C cycling. However, quantification of the atmospheric Mn cycle, which comprises emissions from natural (desert dust, sea salts, volcanoes, primary biogenic particles, and wildfires) and anthropogenic sources (e.g., industrialization and land-use change due to agriculture), transport, and deposition, remains uncertain. Here, we use compiled emission data sets for each identified source to model and quantify the atmospheric Mn cycle by combining an atmospheric model and in situ atmospheric concentration measurements. We estimated global emissions of atmospheric Mn in aerosols ( <10 μm in aerodynamic diameter) to be 1,400 Gg Mn year−1. Approximately 31% of the emissions come from anthropogenic sources. Deposition of the anthropogenic Mn shortened Mn “pseudo” turnover times in 1-m-thick surface soils (ranging from 1,000 to over 10,000,000 years) by 1–2 orders of magnitude in industrialized regions. Such anthropogenic Mn inputs boosted the Mn-to-N ratio of the atmospheric deposition in non-desert dominated regions (between 5 × 10−5 and 0.02) across industrialized areas, but that was still lower than soil Mn-to-N ratio by 1–3 orders of magnitude. Correlation analysis revealed a negative relationship between Mn deposition and topsoil C density across temperate and (sub)tropical forests, consisting with atmospheric Mn deposition enhancing carbon respiration as seen in in situ biogeochemical studies.
Original languageEnglish
Article numbere2023GB007967
Number of pages30
JournalGlobal Biogeochemical Cycles
Volume38
Issue number4
Early online date27 Mar 2024
DOIs
Publication statusPublished - Apr 2024

Bibliographical note

Acknowledgments:
NMM and LL would like to acknowledge the support of DOE Grant: DE-SC0021302. SR acknowledges the support of Grants AEROEXTREME PID2021-125669NB-I00, AEROATLAN CGL 2015-66299-P & POLLINDUST CGL2011-26259 funded by ERDF and the Research State Agency of Spain.

Keywords

  • Mn deposition
  • C turnover
  • atmospheric Mn cycle
  • aerosol modeling
  • Community Earth System Model (CESM)
  • terrestial ecosystem

Fingerprint

Dive into the research topics of 'Characterizing the Atmospheric Mn Cycle and Its Impact on Terrestrial Biogeochemistry'. Together they form a unique fingerprint.

Cite this