A Parameter for Quantifying the Macroscale Asymmetry of Tropical Cyclone Cloud Clusters

Kelvin Ng, Man Hoi Lee, Yongqiang Zong

Research output: Contribution to journalArticlepeer-review

Abstract

A parameter to quantify macroscale (i.e., systemwide) asymmetry of tropical cyclones (TC) in infrared satellite images, galaxy asymmetry (GASYM), which is adopted from astronomy, is described. In addition, an alternative approach to identify TC cloud clusters that is based on a density-based spatial clustering algorithm, cluster identification (CI), is presented in this study. Although a commonly used approach in TC study, the predefined radius of calculation (ROC), can be used to identify the TC region in the calculation of GASYM, this approach is not optimal because the size of the TC cloud cluster is often unknown in the calculation. The area specified by the ROC often includes pixels that do not belong to the TC cloud cluster and excludes pixels that belong to the TC cloud cluster. The CI approach addresses this issue by identifying TC cloud clusters of
any size with any shape, because it depends solely on the threshold brightness temperature that corresponds to the upper bound of the brightness temperature of the specific cloud types. This study shows that the CI approach can be integrated into the GASYM calculation as an objective measure of TC symmetry. Although GASYM-CI and intensity are correlated, the relationship between GASYM-CI and intensity depends on the size of the TC cloud cluster. Comparison between GASYM and an existing objective method to quantify symmetry of TCs, the deviation angle variance technique, is also presented.
Original languageEnglish
Pages (from-to)1603-1622
JournalJournal of Atmospheric and Oceanic Technology
Volume37
Publication statusPublished - 2020

Fingerprint

Dive into the research topics of 'A Parameter for Quantifying the Macroscale Asymmetry of Tropical Cyclone Cloud Clusters'. Together they form a unique fingerprint.

Cite this