TRIM26 maintains cell survival in response to oxidative stress through regulating DNA glycosylase stability

Sifaddin M R Konis, Jonathan R Hughes, Jason L Parsons*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

26 Downloads (Pure)

Abstract

Oxidative DNA base lesions in DNA are repaired through the base excision repair (BER) pathway, which consequently plays a vital role in the maintenance of genome integrity and in suppressing mutagenesis. 8-oxoguanine DNA glycosylase (OGG1), endonuclease III-like protein 1 (NTH1), and the endonuclease VIII-like proteins 1-3 (NEIL1-3) are the key enzymes that initiate repair through the excision of the oxidized base. We have previously identified that the E3 ubiquitin ligase tripartite motif 26 (TRIM26) controls the cellular response to oxidative stress through regulating both NEIL1 and NTH1, although its potential, broader role in BER is unclear. We now show that TRIM26 is a central player in determining the response to different forms of oxidative stress. Using siRNA-mediated knockdowns, we demonstrate that the resistance of cells to X-ray radiation and hydrogen peroxide generated as a consequence of trim26 depletion can be reversed through suppression of selective DNA glycosylases. In particular, a knockdown of neil1 or ogg1 can enhance sensitivity and DNA repair rates in response to X-rays, whereas a knockdown of neil1 or neil3 can produce the same effect in response to hydrogen peroxide. Our study, therefore, highlights the importance of TRIM26 in balancing cellular DNA glycosylase levels required for an efficient BER response.

Original languageEnglish
Article number11613
Number of pages14
JournalInternational Journal of Molecular Sciences
Volume23
Issue number19
DOIs
Publication statusPublished - 1 Oct 2022

Keywords

  • Cell Survival/genetics
  • DNA/metabolism
  • DNA Damage
  • DNA Glycosylases/metabolism
  • DNA Repair
  • Deoxyribonuclease (Pyrimidine Dimer)/genetics
  • Endonucleases/metabolism
  • Hydrogen Peroxide/pharmacology
  • Oxidative Stress
  • RNA, Small Interfering/genetics
  • Ubiquitin-Protein Ligases/metabolism

Fingerprint

Dive into the research topics of 'TRIM26 maintains cell survival in response to oxidative stress through regulating DNA glycosylase stability'. Together they form a unique fingerprint.

Cite this