Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples

Joshua Quick, Nathan D Grubaugh, Steven T Pullan, Ingra M Claro, Andrew D Smith, Karthik Gangavarapu, Glenn Oliveira, Refugio Robles-Sikisaka, Thomas F Rogers, Nathan A Beutler, Dennis R Burton, Lia Laura Lewis-Ximenez, Jaqueline Goes de Jesus, Marta Giovanetti, Sarah C Hill, Allison Black, Trevor Bedford, Miles W Carroll, Marcio Nunes, Luiz Carlos AlcantaraEster C Sabino, Sally A Baylis, Nuno R Faria, Matthew Loose, Jared T Simpson, Oliver G Pybus, Kristian G Andersen, Nicholas J Loman

Research output: Contribution to journalArticlepeer-review

280 Citations (Scopus)
746 Downloads (Pure)

Abstract

Genome sequencing has become a powerful tool for studying emerging infectious diseases; however, genome sequencing directly from clinical samples (i.e., without isolation and culture) remains challenging for viruses such as Zika, for which metagenomic sequencing methods may generate insufficient numbers of viral reads. Here we present a protocol for generating coding-sequence-complete genomes, comprising an online primer design tool, a novel multiplex PCR enrichment protocol, optimized library preparation methods for the portable MinION sequencer (Oxford Nanopore Technologies) and the Illumina range of instruments, and a bioinformatics pipeline for generating consensus sequences. The MinION protocol does not require an Internet connection for analysis, making it suitable for field applications with limited connectivity. Our method relies on multiplex PCR for targeted enrichment of viral genomes from samples containing as few as 50 genome copies per reaction. Viral consensus sequences can be achieved in 1-2 d by starting with clinical samples and following a simple laboratory workflow. This method has been successfully used by several groups studying Zika virus evolution and is facilitating an understanding of the spread of the virus in the Americas. The protocol can be used to sequence other viral genomes using the online Primal Scheme primer designer software. It is suitable for sequencing either RNA or DNA viruses in the field during outbreaks or as an inexpensive, convenient method for use in the lab.

Original languageEnglish
Pages (from-to)1261-1276
Number of pages16
JournalNature protocols
Volume12
Issue number6
DOIs
Publication statusPublished - 24 May 2017

Keywords

  • Genomic analysis
  • Next-generation sequencing
  • Viral epidemiology
  • Viral genetics
  • Virology

Fingerprint

Dive into the research topics of 'Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples'. Together they form a unique fingerprint.

Cite this