Nanoindentation of multifunctional smart composites

Zhenxue Zhang, Denise Bellisario, Fabrizio Quadrini, Simon Jestin, Francesca Ravanelli, Mauro Castello, Xiaoying Li, Hanshan Dong

Research output: Contribution to journalArticlepeer-review

30 Downloads (Pure)

Abstract

Three multifunctional smart composites for next-generation applications have been studied differently through versatile nanoindentation investigation techniques. They are used in order to determine peculiarities and specific properties for the different composites and to study the charge/matrix, charge/surface, or smart functions interactions. At first, a mapping indentation test was used to check the distribution of hardness and modulus across a large region to examine any non-uniformity due to structural anomalies or changes in properties for a carbon nanotubes (CNTs)-reinforced polypropylene (PP V-2) nanocomposite. This smart composite is suitable to be used in axial impeller fans and the results can be used to improve the process of the composite produced by injection moulding. Secondly, the interfacial properties of the carbon fibre (CF) and the resin were evaluated by a push-out method utilizing the smaller indentation tip to target the individual CF and apply load to measure its displacement under loads. This is useful to evaluate the effectiveness of the surface modification on the CFs, such as sizing. Finally, nanoindentation at different temperatures was used for the probing of the in situ response of smart shape memory polymer composite (SMPC) usable in grabbing devices for aerospace applications. Furthermore, the triggering temperature of the shape memory polymer response can be determined by observing the change of indentations after the heating and cooling cycles.
Original languageEnglish
Article number2945
Number of pages13
JournalPolymers
Volume14
Issue number14
DOIs
Publication statusPublished - 20 Jul 2022

Keywords

  • carbon fibre-reinforced composite
  • interfacial shear strength
  • nanocomposite
  • nanoindentation
  • shape memory polymer

Fingerprint

Dive into the research topics of 'Nanoindentation of multifunctional smart composites'. Together they form a unique fingerprint.

Cite this