Emerging properties from mechanical tethering within a post-synthetically functionalised catenane scaffold

Nadia Hoyas pérez, Peter S. Sherin, Victor Posligua, Jake L. Greenfield, Matthew J. Fuchter, Kim E. Jelfs, Marina K. Kuimova, James E. M. Lewis

Research output: Contribution to journalArticlepeer-review

7 Downloads (Pure)

Abstract

Maintaining close spatial proximity of functional moieties within molecular systems can result in fascinating emergent properties. Whilst much work has been done on covalent tethering of functional units for myriad applications, investigations into mechanically linked systems are relatively rare. Formation of the mechanical bond is usually the final step in the synthesis of interlocked molecules, placing limits on the throughput of functionalised architectures. Herein we present the synthesis of a bis-azide [2]catenane scaffold that can be post-synthetically modified using CuAAC ‘click’ chemistry. In this manner we have been able to access functionalised catenanes from a common precursor and study the properties of electrochemically active, emissive and photodimerisable units within the mechanically interlocked system in comparison to non-interlocked analogues. Our data demonstrates that the greater (co-)conformational flexibility that can be obtained with mechanically interlocked systems compared to traditional covalent tethers paves the way for developing new functional molecules with exciting properties.
Original languageEnglish
Pages (from-to)11368-11375
Number of pages8
JournalChemical Science
Volume13
Issue number38
Early online date16 Sept 2022
DOIs
Publication statusPublished - 14 Oct 2022

Bibliographical note

Funding Information:
This work was supported by funding from the Royal Society (RG170321) and an Imperial College Research Fellowship (JEML). PSS acknowledges the European Commission (Individual Marie Skłodowska-Curie Fellowship, ‘Cata-rotors’ No. 834809). MJF thanks the EPSRC for an Established Career Fellowship (EP/R00188X/1). MJF and JLG thank the Leverhulme Trust (RPG-2018-051). KEJ thanks the Royal Society for a University Research Fellowship and the European Research Council under FP7 (CoMMaD, ERC Grant No. 758370).

Publisher Copyright:
© 2022 The Royal Society of Chemistry.

Fingerprint

Dive into the research topics of 'Emerging properties from mechanical tethering within a post-synthetically functionalised catenane scaffold'. Together they form a unique fingerprint.

Cite this